

- 1. Which of the following statements are true?
  - a) Every circle has a unique centre.
  - b) Each radius of a circle is also a chord of the circle.
  - c) A line can meet a circle atmost at two points.
  - d) Every circle has a unique diameter.
  - e) A circle consists of an infinite number of points.

(i) {b,a,c} (ii) {a,c,e} (iii) {b,d,e} (iv) {d,c} (v) {b,a}

- 2. Which of the following statements are true?
  - a) A secant of a circle is a segment having its end points on the circle.
  - b) One and only one tangent can be drawn to a circle from a point outside it.
  - c) One and only one tangent can be drawn to pass through a point on a circle.
  - d) Diameter of a circle is a part of the semi-circle of the circle.
  - e) Every circle has a unique diameter.
  - (i) {e,a,c} (ii) {b,d,c} (iii) {a,c} (iv) {b,d} (v) {c,d}
- 3. Find the missing angle in the following figure?



(i) 42° (ii) 57° (iii) 37° (iv) 27° (v) 32°

4. If 'l' is the length of the tangent drawn to a circle with radius 'r' from point 'P' which is 'd' cm away from the centre, then

(i) 
$$d = \sqrt{(l^2 + r^2)}$$
 (ii)  $d = \sqrt{(l^2 - r^2)}$  (iii)  $l = \sqrt{(d^2 + r^2)}$  (iv)  $l = \sqrt{(d^2 - r^2)}$  (v)  $r = \sqrt{(l^2 + d^2)}$ 

- 5. Two circles with radii R and r touch internally. If the distance between their centres is d, then
  - (i) d = R + r (ii) d < R + r (iii) d > R r (iv) d < R r (v) d = R r
- 6. The angle between a tangent to a circle and the radius drawn at the point of contact is
  (i) 105° (ii) 100° (iii) 95° (iv) 90° (v) 120°
- 7. If two circles of radii 15 cm and 2 cm touch internally, the distance between their centres is
  (i) 12 cm (ii) 15 cm (iii) 11 cm (iv) 13 cm (v) 14 cm

- 8. If two circles of radii 14 cm and 2 cm touch externally, the distance between their centres is
  (i) 14 cm (ii) 16 cm (iii) 18 cm (iv) 17 cm (v) 15 cm
- If two circlestouch internally, the number of their common tangents is
   (i) (-2) (ii) 4 (iii) 2 (iv) 0 (v) 1
- 10. If two circles intersect, the number of their common tangents is(i) 3 (ii) 4 (iii) 1 (iv) (-1) (v) 2
- 11. If two circlestouch externally, the number of their common tangents is(i) 1 (ii) 3 (iii) 2 (iv) 5 (v) 4
- O is the centre of the circumcircle of  $\triangle$ ABC. Tangents at A and B intersect at D. If  $\angle$ ADB = 64.31° and  $\angle$ AOC = 130°, find  $\angle$ CAB



13. O is the centre of the circumcircle of  $\triangle$ FGH. Tangents at F and H intersect at I. If  $\angle$ FIH = 70.19°, find  $\angle$ HGF



(i) 54.91° (ii) 59.91° (iii) 84.91° (iv) 64.91° (v) 69.91°

14. In the given figure, O is the centre of the circle and FG is the tangent at C. If  $\angle DCE = 38^{\circ}$  and  $\angle FCD = 86^{\circ}$ , find  $\angle CED$ 



In the given figure, O is the centre of the circle and EF is the tangent at B. If  $\angle CBD = 56^{\circ}$  and  $\angle EBC = 50^{\circ}$ , find  $\angle DBF$ 



16. In the given figure, O is the centre of the circle and DF is the tangent at E . If  $\angle CBE = 25^{\circ}$ , find  $\angle CDE$ 



17. In the given figure, O is the centre of the circle and HJ is the tangent at I. If  $\angle$ GFI = 29°, find  $\angle$ GHI +  $\angle$ GIH



18. In the given figure, O is the centre of the circle and LM is the tangent at K. If  $\angle KJI = 50^{\circ}$ , find  $\angle MKI$ 



19. In the given figure, O is the centre of the circle and GH is the tangent at F. If  $\angle$ FDE = 41°, find  $\angle$ GFE



20. In the given figure, O is the centre of the circle and KL is the tangent at J. If  $\angle IGJ = 58^{\circ}$  and  $\angle GIH = 62^{\circ}$ , find  $\angle LJG$ 



21. In the given figure, O is the centre of the circle and HI is the tangent at G. If  $\angle$ FDG = 34° and  $\angle$ DFE = 48°, find  $\angle$ FDE



22. In the given figure, O is the centre of the circle and FG is the tangent at E. If  $\angle DBE = 34^{\circ}$  and  $\angle BDC = 61^{\circ}$ , find  $\angle FED$ 



23. In the given figure, O is the centre of the circle and HI is the tangent at E. If  $\angle OFE = 40^{\circ}$ , find  $\angle IEF$ 



(i)  $60^{\circ}$  (ii)  $65^{\circ}$  (iii)  $55^{\circ}$  (iv)  $80^{\circ}$  (v)  $50^{\circ}$ 

24. In the given figure, O is the centre of the circle and the tangents FI and HI meet at point I. If  $\angle$ GHF = 59°, find  $\angle$ FOH



(i) 123° (ii) 118° (iii) 148° (iv) 133° (v) 128°

- 25. A line which intersects the circle at two distinct points is called a
  - (i) segment (ii) tangent (iii) chord (iv) circumference (v) secant
- 26. A line which touches a circle at only one point is called a
  - (i) secant (ii) chord (iii) tangent (iv) semi-circle (v) segment

27. Which of the following statements are true?

- a) Infinite circles can be drawn passing through three collinear points.
- b) Only one circle can be drawn with a centre.
- c) Only one circle can be drawn passing through two points.
- d) Atmost one circle can be drawn passing through three non-collinear points.
- e) Exactly two tangents can be drawn parallel to a secant.

(i) {b,e,d} (ii) {c,a,d} (iii) {b,e} (iv) {d,e} (v) {a,d}

28. Which of the following statements are true?

- a) Atmost two common tangents can be drawn touching any two circles.
- b) Atmost three common tangents can be drawn touching two circles which touch each other.
- c) A maximum of four common tangents can be drawn touching any two circles.
- d) Atmost one common tangent can be drawn for any two concentric circles.

(i) {b,c} (ii) {a,c,b} (iii) {d,c} (iv) {a,d,b} (v) {a,b}

- 29. Which of the following statements are true?
  - a) A diameter is a limiting case of a chord.
  - b) A tangent is the limiting case of a secant.
  - c) A radius is a limiting case of a diameter.
  - d) A secant has two end points.
  - e) A secant and a chord are same.
  - (i) {e,c,a} (ii) {d,b,a} (iii) {c,a} (iv) {a,b} (v) {d,b}

- 30. Which of the following statements are true?
  - a) Only two tangents can be drawn from a point outside the circle.
  - b) Two tangents to a circle always intersect.
  - c) The sides of a triangle can be tangents to a circle.
  - d) Atmost one tangent can be drawn through a point inside the circle.
  - e) Only one tangent can be drawn through a point on a circle.

(i) {b,a,c} (ii) {d,c} (iii) {b,d,e} (iv) {a,c,e} (v) {b,a}

- 31. Which of the following statements are true?
  - a) If two tangents to a circle intersect, their points of contact with the circle together with their point of intersection form an isosceles triangle.
  - b) If two tangents are parallel, the distance between them is equal to the diameter of the circle.
  - c) A line parallel to a tangent is a secant.
  - d) If two tangents are perpendicular, they form a right angled triangle with their points of contact with the circle and their point of intersection.
  - e) Two different tangents can meet at a point on the circle.
  - (i) {c,a} (ii) {e,b} (iii) {c,a,b} (iv) {c,e,d} (v) {a,b,d}
- 32. Which of the following statements are true?
  - a) If two circles touch each other externally, there is only one common tangent.
  - b) If two circles intersect, then two common tangents can be drawn.
  - c) There exists four common tangents for any two non-intersecting circles.
  - d) If two circles touch each other internally, there is only one common tangent.
  - (i)  $\{b,c,d\}$  (ii)  $\{a,b,c\}$  (iii)  $\{a,d\}$  (iv)  $\{a,c\}$  (v)  $\{a,b\}$
- 33. Which of the following statements are true?
  - a) If two circles touch externally, their centres and the point of contact form an isosceles triangle.
  - b) If two circles touch externally, the distance between their centres is the sum of their radii.
  - c) If two circles touch internally, the square of the distance between their centres is the difference of the squares of their radii.
  - d) If two circles touch internally, their centres and the point of contact form a scalene triangle.
  - e) If two circles touch internally, the distance between their centres is the difference of their radii.
  - f) If two circles touch externally, the square of the distance between their centres is the sum of the squares of their radii.
  - (i)  $\{a,b\}$  (ii)  $\{b,e\}$  (iii)  $\{d,f,b\}$  (iv)  $\{a,e,b\}$  (v)  $\{c,e\}$
- 34. With the vertices of a triangle  $\triangle$ CDE as centres, three circles are drawn touching each other externally. If the sides of the triangle are 12 cm , 16 cm and 14 cm , find the radii of the circles
  - (i) 5 cm, 12 cm & 9 cm respectively (ii) 10 cm, 12 cm & 14 cm respectively
  - (iii) 10 cm , 7 cm & 9 cm respectively (iv) 5 cm , 7 cm & 9 cm respectively
  - (v) 5 cm , 7 cm & 14 cm respectively

In the given figure, IJ and KL are parallel tangents to the circle with centre O. IL is another tangent meeting IJ and KL at I and L. Find  $\angle$ IOL



36. In the given figure, AD is the common tangent to the two circles. AB & AC are also tangents. Given AB = 23 cm, find AC



(i) 21 cm (ii) 22 cm (iii) 25 cm (iv) 23 cm (v) 24 cm





38. In the given figure, FS & GS are tangents to the circle with centre O. Given OF = 12 cm and FG = 22 cm, find FS



39. In the given figure, AT & BT are tangents to the circle with centre O. Given  $\angle ATB = 41^{\circ}$ , find  $\angle AOB$ 



(i) 169° (ii) 144° (iii) 139° (iv) 154° (v) 149°

40. Two concentric circles are of radii 21 cm and 9 cm. Find the length of the chord of the outer circle that touches the inner circle

(i) 36.95 cm (ii) 37.95 cm (iii) 39.95 cm (iv) 35.95 cm (v) 38.95 cm

| Assignment Key |           |           |           |          |          |
|----------------|-----------|-----------|-----------|----------|----------|
| 1) (ii)        | 2) (v)    | 3) (iv)   | 4) (i)    | 5) (v)   | 6) (iv)  |
| 7) (iv)        | 8) (ii)   | 9) (v)    | 10) (v)   | 11) (ii) | 12) (i)  |
| 13) (i)        | 14) (ii)  | 15) (v)   | 16) (i)   | 17) (i)  | 18) (ii) |
| 19) (i)        | 20) (iv)  | 21) (v)   | 22) (iii) | 23) (v)  | 24) (ii) |
| 25) (v)        | 26) (iii) | 27) (iv)  | 28) (i)   | 29) (iv) | 30) (iv) |
| 31) (v)        | 32) (i)   | 33) (ii)  | 34) (iv)  | 35) (iv) | 36) (iv) |
| 37) (v)        | 38) (v)   | 39) (iii) | 40) (ii)  |          |          |
|                |           |           |           |          |          |

Copyright © Small Systems Computing Pvt. Ltd.