



From a point 200 m away from a vertical cliff, the angles of elevation of the top and the foot of a vertical pillar at the top of the cliff are  $38^\circ 19'$  and  $36^\circ 41'$  respectively. Find the height of the cliff.

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 36        | 0.7265 | 0.7292 | 0.7319 | 0.7346 | 0.7373 | 0.7400 | 0.7427 | 0.7454 | 0.7481 | 0.7508 | 5  | 9  | 14 | 18 | 23 |

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 38        | 0.7813 | 0.7841 | 0.7869 | 0.7898 | 0.7926 | 0.7954 | 0.7983 | 0.8012 | 0.8040 | 0.8069 | 5  | 9  | 14 | 19 | 23 |

(i) 149.00 m (ii) 151.00 m (iii) 167.00 m (iv) 135.00 m (v) 122.00 m

From a point 160 m away from a vertical cliff, the angles of elevation of the top and the foot of a vertical pillar at the top of the cliff are  $36^\circ 40'$  and  $22^\circ 59'$  respectively. Find the height of the pillar.

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 22        | 0.4040 | 0.4061 | 0.4081 | 0.4101 | 0.4122 | 0.4142 | 0.4163 | 0.4183 | 0.4202 | 0.4224 | 3  | 7  | 10 | 13 | 17 |

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 36        | 0.7265 | 0.7292 | 0.7319 | 0.7346 | 0.7373 | 0.7400 | 0.7427 | 0.7454 | 0.7481 | 0.7508 | 5  | 9  | 14 | 18 | 23 |

(i) 51.26 m (ii) 46.26 m (iii) 48.26 m (iv) 54.26 m (v) 56.26 m

The angles of depression of two boats from the top of a cliff 80 m high are  $25^\circ$  and  $35^\circ$  respectively. Find the distance between the boats, if the boats are on the same side of the cliff .

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 65        | 2.1445 | 2.1543 | 2.1642 | 2.1742 | 2.1842 | 2.1943 | 2.2045 | 2.2148 | 2.2251 | 2.2355 | 17 | 34 | 51 | 68 | 85 |

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 55        | 1.4281 | 1.4335 | 1.4388 | 1.4442 | 1.4496 | 1.4550 | 1.4605 | 1.4659 | 1.4715 | 1.4770 | 9  | 18 | 27 | 36 | 45 |

(i) 62.31 m (ii) 60.31 m (iii) 52.31 m (iv) 57.31 m (v) 54.31 m

The angles of depression of two boats from the top of a cliff 100 m high are  $31^\circ$  and  $27^\circ$  respectively. Find the distance between the boats, if the boats are on the opposite sides of the cliff .

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 59        | 1.6643 | 1.6709 | 1.6775 | 1.6842 | 1.6909 | 1.6977 | 1.7045 | 1.7113 | 1.7182 | 1.7251 | 11 | 23 | 34 | 45 | 56 |

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 63        | 1.9626 | 1.9711 | 1.9797 | 1.9883 | 1.9970 | 2.0057 | 2.0145 | 2.0233 | 2.0323 | 2.0413 | 15 | 29 | 44 | 58 | 73 |

(i) 385.69 m (ii) 376.69 m (iii) 334.69 m (iv) 345.69 m (v) 362.69 m

A man on the top of a vertical observation tower observes a car moving at a uniform speed coming directly towards him. If it takes 10 min for the angle of depression to change from  $21^\circ$  to  $27^\circ$ , how soon after this, will the car reach the observation tower?

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 21        | 0.3839 | 0.3859 | 0.3879 | 0.3899 | 0.3919 | 0.3939 | 0.3959 | 0.3979 | 0.4000 | 0.4020 | 3  | 7  | 10 | 13 | 17 |

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 27        | 0.5095 | 0.5117 | 0.5139 | 0.5161 | 0.5184 | 0.5206 | 0.5228 | 0.5250 | 0.5272 | 0.5295 | 4  | 7  | 11 | 15 | 18 |

(i) 31 min 35 sec (ii) 27 min 31 sec (iii) 29 min 33 sec (iv) 33 min 36 sec (v) 30 min 34 sec

From a point 200 m above a lake, the angle of elevation of a cloud is  $34^\circ$  and the angle of depression in the lake is  $65^\circ$ . Find the height of the cloud from the lake.

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 34        | 0.6745 | 0.6771 | 0.6796 | 0.6822 | 0.6847 | 0.6873 | 0.6899 | 0.6924 | 0.6930 | 0.6976 | 4  | 9  | 13 | 17 | 22 |

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 65        | 2.1445 | 2.1543 | 2.1642 | 2.1742 | 2.1842 | 2.1943 | 2.2045 | 2.2148 | 2.2251 | 2.2355 | 17 | 34 | 51 | 68 | 85 |

(i) 391.54 m (ii) 359.54 m (iii) 383.54 m (iv) 380.54 m (v) 398.54 m

At the foot of a mountain, the elevation of its summit is  $50^\circ$ . After ascending 600 m towards the mountain up an incline of  $21^\circ$ , the elevation changes to  $70^\circ$ . Find the height of the mountain.

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 50        | 1.1918 | 1.1960 | 1.2002 | 1.2045 | 1.2088 | 1.2131 | 1.2174 | 1.2218 | 1.2261 | 1.2305 | 7  | 14 | 22 | 29 | 36 |

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4'  | 5'  |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|-----|-----|
| 70        | 2.7475 | 2.7625 | 2.7776 | 2.7929 | 2.8083 | 2.8239 | 2.8397 | 2.8556 | 2.8716 | 2.8878 | 26 | 52 | 78 | 104 | 133 |

**From Table of Natural Cosines**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 21        | 0.9336 | 0.9330 | 0.9323 | 0.9317 | 0.9311 | 0.9304 | 0.9298 | 0.9291 | 0.9285 | 0.9278 | 1  | 2  | 3  | 4  | 5  |

**From Table of Natural Sines**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 21        | 0.3584 | 0.3600 | 0.3616 | 0.3633 | 0.3649 | 0.3665 | 0.3681 | 0.3697 | 0.3714 | 0.3730 | 3  | 5  | 8  | 11 | 13 |

(i) 1194.23 m (ii) 1014.23 m (iii) 1254.23 m (iv) 864.23 m (v) 884.23 m

The shadow of a vertical tower BA on a level ground is increased by 45 m, when the altitude of the sun changes from  $44^\circ$  to  $27^\circ$ . Find the height of the tower .

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 44        | 0.9657 | 0.9691 | 0.9725 | 0.9759 | 0.9793 | 0.9827 | 0.9861 | 0.9896 | 0.9930 | 0.9965 | 6  | 11 | 17 | 23 | 28 |

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 27        | 0.5095 | 0.5117 | 0.5139 | 0.5161 | 0.5184 | 0.5206 | 0.5228 | 0.5250 | 0.5272 | 0.5295 | 4  | 7  | 11 | 15 | 18 |



(i) 48.53 m (ii) 45.53 m (iii) 43.53 m (iv) 53.53 m (v) 51.53 m

A boy standing on a vertical cliff in a jungle observes two rest houses in line with him on opposite sides deep in the jungle below. If their angles of depression are  $30^\circ$  and  $20^\circ$  and the distance between them is 145 m , find the height of the cliff.

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 30        | 0.5774 | 0.5797 | 0.5820 | 0.5844 | 0.5867 | 0.5890 | 0.5914 | 0.5938 | 0.5961 | 0.5985 | 4  | 8  | 12 | 16 | 20 |

**From Table of Natural Tangents**

| $x^\circ$ | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1' | 2' | 3' | 4' | 5' |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|
| 20        | 0.3640 | 0.3659 | 0.3679 | 0.3699 | 0.3719 | 0.3739 | 0.3759 | 0.3779 | 0.3799 | 0.3819 | 3  | 7  | 10 | 13 | 17 |

(i) 27.37 m (ii) 37.37 m (iii) 35.37 m (iv) 32.37 m (v) 29.37 m

A man in a boat rowing away from a lighthouse 90 m high, takes 1.5 min to change the angle of elevation of the top of the lighthouse from  $37^\circ$  to  $24^\circ$ . Find the speed of the boat.

| From Table of Natural Tangents |        |        |        |        |        |        |        |        |        |        |      |    |    |    |    |
|--------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|----|----|----|----|
| x°                             | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1'2' | 3' | 4' | 5' |    |
| 24                             | 0.4452 | 0.4473 | 0.4494 | 0.4515 | 0.4536 | 0.4557 | 0.4578 | 0.4599 | 0.4621 | 0.4642 | 4    | 7  | 11 | 14 | 18 |
| From Table of Natural Tangents |        |        |        |        |        |        |        |        |        |        |      |    |    |    |    |
| x°                             | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1'2' | 3' | 4' | 5' |    |
| 37                             | 0.7536 | 0.7563 | 0.7590 | 0.7618 | 0.7646 | 0.7673 | 0.7701 | 0.7729 | 0.7757 | 0.7785 | 5    | 9  | 14 | 19 | 23 |

(i) 7.92 m/sec (ii) 8.92 m/sec (iii) 1.92 m/sec (iv) 0.92 m/sec (v) 2.92 m/sec

Two vertical poles are on either side of a road. A 37 m long ladder is placed between the two poles. When the ladder rests against one pole, it makes an angle of  $22^\circ 57'$  with the pole and when it is turned to rest against another pole, it makes an angle of  $28^\circ 49'$  with the road. Find the width of the road.

| From Table of Natural Cosines |        |        |        |        |        |        |        |        |        |        |      |    |    |    |   |
|-------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|----|----|----|---|
| x°                            | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1'2' | 3' | 4' | 5' |   |
| 22                            | 0.9272 | 0.9263 | 0.9259 | 0.9252 | 0.9245 | 0.9239 | 0.9232 | 0.9225 | 0.9219 | 0.9212 | 1    | 2  | 3  | 5  | 6 |
| From Table of Natural Cosines |        |        |        |        |        |        |        |        |        |        |      |    |    |    |   |
| x°                            | 0'     | 6'     | 12'    | 18'    | 24'    | 30'    | 36'    | 42'    | 48'    | 54'    | 1'2' | 3' | 4' | 5' |   |
| 28                            | 0.8829 | 0.8821 | 0.8813 | 0.8805 | 0.8796 | 0.8788 | 0.8780 | 0.8771 | 0.8763 | 0.8755 | 1    | 3  | 4  | 5  | 7 |

(i) 61.49 m (ii) 69.49 m (iii) 71.49 m (iv) 63.49 m (v) 66.49 m

## Assignment Key

---

|         |        |         |          |         |          |
|---------|--------|---------|----------|---------|----------|
| 1) (i)  | 2) (i) | 3) (iv) | 4) (v)   | 5) (v)  | 6) (iii) |
| 7) (ii) | 8) (i) | 9) (iv) | 10) (iv) | 11) (v) |          |