Name: Similarity of Triangles

Chapter : Triangles
Grade : CBSE Grade X

License: Non Commercial Use

In the given figure \triangle GHI,

Is the mid-point of \overline{GH} and $\overline{JK} \parallel \overline{HI}$, then $\overline{GK} =$

(i) $\frac{IG}{2}$ (ii) GJ (iii) $\frac{HI}{2}$ (iv) HI (v) $\frac{GH}{2}$

In the given figure \triangle ABC,

2. Dis the mid-point of \overline{AB} and $\overline{DE} \parallel \overline{BC}$, then AD =

(i) BC (ii) AE (iii) $\frac{CA}{2}$ (iv) $\frac{AB}{2}$ (v) $\frac{BC}{2}$

In the given figure △IJK,

3. Lis the mid-point of \overline{IJ} and $\overline{LM} \parallel \overline{JK}$, then IL=

(i) KI (ii) LJ (iii) IM (iv) MK (v) IJ

In the given figure △HIJ,

. Kis the mid-point of \overline{HI} and $\overline{KL} \parallel \overline{IJ}$, then KI =

(i) HK (ii) JH (iii) HI (iv) LJ (v) HL

In the given figure \triangle DEF,

5. Gis the mid-point of \overline{DE} and $\overline{GH} \parallel \overline{EF}$, then DH=

(i) GE (ii) DE (iii) DG (iv) HF (v) FD

In the given figure \triangle GHI,

6. Jis the mid-point of \overline{GH} and $\overline{JK} \parallel \overline{HI}$, then KI =

(i) GK (ii) GJ (iii) GH (iv) IG (v) JH

7. Identify the property by which the two given triangles are similar

W 2 cm V

(i) not similar (ii) AAA Similarity (iii) SAS Similarity (iv) SSS Similarity

8. Identify the property by which the two given triangles are similar

- (i) SSS Similarity (ii) SAS Similarity (iii) not similar (iv) AAA Similarity
- 9. Identify the property by which the two given triangles are similar

(i) SAS Similarity (ii) SSS Similarity (iii) AAA Similarity (iv) not similar

In the given figure, $\triangle IJK$ and $\triangle PQR$ are such that

10.
$$\angle J = \angle Q$$
 and $\frac{IJ}{PQ} = \frac{JK}{QR}$.

Identify the property by which the two triangles are similar

(i) AAA Similarity (ii) SAS Similarity (iii) not similar (iv) SSS Similarity

In the given figure, $\triangle ABC$ and $\triangle QRS$ are such that

11. $\angle B = \angle R$ and $\angle C = \angle S$.

Identify the property by which the two triangles are similar

(i) SAS Similarity (ii) not similar (iii) SSS Similarity (iv) AAA Similarity

In the given figure, $\triangle EFG$ and $\triangle QRS$ are such that

12.
$$\frac{EF}{QR} = \frac{FG}{RS} = \frac{GE}{SQ}$$
.

Identify the property by which the two triangles are similar

(i) AAA Similarity (ii) SSS Similarity (iii) not similar (iv) SAS Similarity

13. In the given figure, RS || PQ.If $\frac{OR}{RP} = \frac{1}{1}$ and OQ = 14.8 cm, find OS

(i) 9.40 cm (ii) 5.40 cm (iii) 8.40 cm (iv) 7.40 cm (v) 6.40 cm

In the given figure, EF \parallel CD. 14. If BE=5.25 cm,BC=10.5 cm and BD=15.8 cm, find BF

(i) 9.90 cm (ii) 6.90 cm (iii) 7.90 cm (iv) 8.90 cm (v) 5.90 cm

15. In the given figure, PQ \parallel HI and GQ = 12 cm, GI = 20 cm and HI = 20 cm, find PQ

(i) 14.0 cm (ii) 11.0 cm (iii) 13.0 cm (iv) 10.0 cm (v) 12.0 cm

16. In the given figure, \triangle EFG is isosceles right-angled at F and FH \perp GE. \angle G =

- (i) $\angle J$ (ii) $\angle F$ (iii) $\angle I$ (iv) $\angle H$ (v) $\angle E$
- 17. In the given figure, \triangle CDE is isosceles right-angled at D and DF \bot EC. \angle CDF \neq

(i) \angle FDE (ii) \angle ECD (iii) \angle FCD (iv) \angle DFC (v) \angle DEF

In the given figure, three lines I , m and n are such that I $\|$ m $\|$ n.

18. Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively. $\triangle FDA \sim$

 $\begin{array}{c|c}
P & R \\
\hline
D & > I
\end{array}$ $\begin{array}{c|c}
B & H & E & > m
\end{array}$ $\begin{array}{c|c}
C & F & > n
\end{array}$

(i) $\triangle ABH$ (ii) $\triangle FEH$ (iii) $\triangle ACF$ (iv) $\triangle DCF$ (v) $\triangle DAE$

In the given figure, three lines I , m and n are such that I \parallel m \parallel n.

19. Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.

∠HFE =

(i) ∠FEH (ii) ∠HAB (iii) ∠AFD (iv) ∠FDA (v) ∠FAC

In the given figure, three lines I , m and n are such that I \parallel m \parallel n.

20. Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.

∠ABH =

(i) ZEHF (ii) ZACF (iii) ZDAF (iv) ZFEH (v) ZFDA

In the given figure, three lines I , m and n are such that I $\|$ m $\|$ n.

21. Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.

∠DAF =

(i) ∠CFA (ii) ∠HFE (iii) ∠BHA (iv) ∠EHF (v) ∠AFD

In the given figure, EFGH is a trapezium in which

EF || GH and the diagonals FH and EG intersect at I.

If IE = (9x+9) cm, FI = (5x+14) cm, IG = (8x+8) cm and

HI = (5x+3) cm, find the value of x

(i) (17,-2) (ii) (18,0) (iii) (1,19) (iv) (17,-1) (v) (19,-1)

23. In the given figure, FGHI is a trapezium in which FG \parallel HI and the diagonals GI and FH intersect at J. \triangle JFG \sim

(i) $\triangle GHI$ (ii) $\triangle IFG$ (iii) $\triangle JIF$ (iv) $\triangle JGH$ (v) $\triangle JHI$

24. In the given figure, the altitudes OE and FP of \triangle DEF meet at N. \triangle NEF \sim

(i) $\triangle \mathsf{OFN}$ (ii) $\triangle \mathsf{PEN}$ (iii) $\triangle \mathsf{PEF}$ (iv) $\triangle \mathsf{OFE}$ (v) $\triangle \mathsf{NPO}$

25. In the given figure, the altitudes TJ and KU of \triangle IJK meet at S. \angle KTS =

(i) $\angle SUJ$ (ii) $\angle UJS$ (iii) $\angle JSU$ (iv) $\angle SKT$ (v) $\angle TSK$

26. In the given figure, TU \parallel FG , and median EH bisects TU. If EF = 18 cm, EH = 18 cm and EI = 10 cm, ET =

(i) 8.00 cm (ii) 12.00 cm (iii) 10.00 cm (iv) 9.00 cm (v) 11.00 cm

27. In the given figure, QR \parallel IJ , and median HK bisects QR. If HK = 14.6 cm, HJ = 15 cm and HR = 8.57 cm, HL =

(i) 9.34 cm (ii) 6.34 cm (iii) 7.34 cm (iv) 10.34 cm (v) 8.34 cm

28. In the given figure, TU \parallel FG , and median EH bisects TU. \triangle EIU \sim

(i) △EHG (ii) △EFH (iii) △EFG (iv) △FGE (v) △ETI

29. In the given figure, $\triangle ABC$ is a triangle in which AD is the internal bisector of $\angle A$ and CE \parallel DA meeting BA produced at E . $\angle CAD =$

(i) ∠CEA (ii) ∠BDA (iii) ∠ADC (iv) ∠DCA (v) ∠EAC

30. In the given figure, O and P are points on the sides LM and LN respectively of \triangle LMN.For which of the following cases, OP \parallel MN

- a) LO = 9 cm, OM = 9 cm, LP = 9 cm and PN = 9 cm
- b) LM = 18 cm, OM = 9 cm, LP = 11 cm and LN = 18 cm
- c) LM = 18 cm, OM = 9 cm, LN = 18 cm and LP = 9 cm
- d) LM = 18 cm, LO = 11 cm, LN = 18 cm and PN = 9 cm

(i) {d,c} (ii) {b,a} (iii) {b,c,a} (iv) {b,d,a} (v) {a,c}

31. Which of the following are true?

- a) Any two squares are similar.
- b) Any two triangles are congruent.
- c) Any two squares are congruent.
- d) Any two circles are similar.
- e) Any two triangles are similar.
- f) Any two circles are congruent.

(i) {a,d} (ii) {b,a} (iii) {e,f,a} (iv) {c,d} (v) {b,d,a}

32. Which of the following are true?

- a) A sector is a polygonal region.
- b) A semi-circle is a polygonal region.
- c) A square is a polygonal region.
- d) A circle is a polygonal region.
- e) A triangle is a polygonal region.

(i) {b,e} (ii) {d,a,c} (iii) {c,e} (iv) {b,e,c} (v) {a,c}

33. Which of the following are true?

- a) If two figures are similar, then they are congruent too.
- b) Similar figures have same area.
- c) Similar and congruent are not synonymous.
- d) Congruent figures have same area.
- e) If two figures are congruent, then they are similar too.

(i) {a,c,d} (ii) {a,c} (iii) {c,d,e} (iv) {b,d} (v) {a,b,e}

34. Which of the following are true?

- a) Area of a convex polygonal region is equal to the sum of the areas of all triangles formed by joining the vertices of the polygon with an interior point.
- b) Area of the union of two polygonal region is the sum of the individual area.
- c) Area of the union of two polygonal region is not equal to the sum of the individual area.
- d) A polygonal region can be divided into a finite number of triangles in a unique way.
- (i) {b,a} (ii) {d,c} (iii) {a,c} (iv) {b,d,a} (v) {b,c,a}

- 35. Which of the following are necessary conditions for similarity of two polygons?
 - a) The corresponding sides are proportional.
 - b) The corresponding sides are equal.
 - c) The corresponding angles are proportional.
 - d) The corresponding angles are equal.
 - (i) $\{b,c,a\}$ (ii) $\{b,d,a\}$ (iii) $\{b,a\}$ (iv) $\{c,d\}$ (v) $\{a,d\}$

36. Which of the following are true?

- a) Similarity is anti symmetric.
- b) Similarity is symmetric.
- c) Similarity is transitive.
- d) Similarity is reflexive.
- (i) {a,b} (ii) {b,c,d} (iii) {a,b,c} (iv) {a,c} (v) {a,d}

37. Which of the following are true?

- a) Any two quadrilaterals are similar if the corresponding sides are proportional.
- b) Any two triangles are similar if the corresponding sides are proportional.
- c) Any two quadrilaterals are similar if the corresponding angles are equal.
- d) Any two triangles are similar if the corresponding angles are equal.
- (i) {a,b,d} (ii) {c,a,b} (iii) {c,b} (iv) {c,a} (v) {c,d}

In the given figure, the area of the \triangle GHI is x sq.cm. J,K,L are the mid-points of the sides HI , IG and GH respectively. The area of the \triangle JKL is

- (i) $\frac{2}{3}$ of area of \triangle GHI (ii) $\frac{1}{2}$ of area of \triangle GHI (iii) $\frac{1}{4}$ of area of \triangle GHI (iv) $\frac{3}{4}$ of area of \triangle GHI
- (v) $\frac{1}{3}$ of area of $\triangle GHI$

In the given figure, the parallelogram HIJK and the triangle \triangle LHI are on the same bases and between the same 39. parallels.

The area of the △LHI is x sq.cm. The area of the parallelogram is

- (i) $\frac{3}{2}$ the area of the triangle (ii) thrice the area of the triangle (iii) $\frac{5}{4}$ the area of the triangle
- (iv) twice the area of the triangle (v) $\frac{4}{3}$ the area of the triangle

40. In the given \triangle BCD, EF \parallel CD. If BE : EC = 9.5 cm : 9.5 cm and BD = 18 cm, BF =

(i) 9.00 cm (ii) 7.00 cm (iii) 10.00 cm (iv) 8.00 cm (v) 11.00 cm

41. In the given two similar triangles, if b = 15 cm, c = 18 cm, d = 18 cm, e = 9 cm, find f

e g

(i) $8.80 \, \text{cm}$ (ii) $12.80 \, \text{cm}$ (iii) $9.80 \, \text{cm}$ (iv) $11.80 \, \text{cm}$ (v) $10.80 \, \text{cm}$

42. In the given figure, given $\angle KHI = \angle JHK$, x : y = 10.56 cm : 8.44 cm and p = 20 cm, find q = 10.56 cm

(i) 14.00 cm (ii) 18.00 cm (iii) 15.00 cm (iv) 16.00 cm (v) 17.00 cm

43. In the given figure, given \angle IFG = \angle HFI, p = 8.82 cm, q = 11.18 cm and GH = 20 cm, find GI =

(i) 9.82 cm (ii) 8.82 cm (iii) 10.82 cm (iv) 6.82 cm (v) 7.82 cm

(i) 12 cm (ii) 15 cm (iii) 14 cm (iv) 16 cm (v) 13 cm

45. In the given figure, $\angle IJL = 49.35^{\circ}$, find the value of x =

(i) 41.65° (ii) 40.65° (iii) 39.65° (iv) 38.65° (v) 42.65°

46. In the given figure, $\angle GHI = 47.2^{\circ}$, find the value of y =

(i) 41.80° (ii) 44.80° (iii) 40.80° (iv) 43.80° (v) 42.80°

47. In the given figure, if EF ∥ GH then

(i) $\triangle \mathsf{EFI} \sim \triangle \mathsf{IHG}$ (ii) $\triangle \mathsf{EFI} \sim \triangle \mathsf{HGI}$ (iii) $\triangle \mathsf{IEF} \sim \triangle \mathsf{IGH}$ (iv) $\triangle \mathsf{EFI} \sim \triangle \mathsf{IGH}$ (v) $\triangle \mathsf{IFE} \sim \triangle \mathsf{IHG}$

48. In the given figure, \triangle EFG is right-angled at F. Also, FH \bot EG. If EF = 17 cm, FG = 19 cm, then find FH.

(i) 13.67 cm (ii) 11.67 cm (iii) 10.67 cm (iv) 14.67 cm (v) 12.67 cm

49. In the given figure, $\triangle ABC$ is right-angled at B. Also, BD \perp AC. If AD = 14.8 cm, DC = 12.1 cm, then find BD.

(i) 11.38 cm (ii) 15.38 cm (iii) 12.38 cm (iv) 13.38 cm (v) 14.38 cm

50. In the given figure, \triangle EFG ~ \triangle MNO and EF = 14 cm, MN = 19.6 cm. If the area of the \triangle EFG = 80.6 sq.cm, find the area of the \triangle MNO

(i) 157.97 sq.cm (ii) 156.97 sq.cm (iii) 158.97 sq.cm (iv) 155.97 sq.cm (v) 159.97 sq.cm

In the given figure, \triangle ABC ~ \triangle MNO and BC = 11 cm , NO = 15.4 cm and AD = 11.18 cm, find the area of the \triangle MNO

(i) 119.50 sq.cm (ii) 118.50 sq.cm (iii) 122.50 sq.cm (iv) 121.50 sq.cm (v) 120.50 sq.cm

In the given figure, \triangle EFG & \triangle QRS are similar triangles. If the ratio of the heights EH : QT = 14 : 19, then the ratio of their areas is

- (i) 195 sq.cm:361 sq.cm (ii) 196 sq.cm:358 sq.cm (iii) 197 sq.cm:361 sq.cm (iv) 196 sq.cm:361 sq.cm
- (v) 196 sq.cm: 364 sq.cm
- In the given figure, points M , N and O are the mid-points of sides KL, LJ and JK of \triangle JKL. Which of the following are true?
 - a) Area of trapezium KLNO is thrice the area of $\triangle JON$
 - b) All four small triangles have equal areas
 - c) Area of \triangle JKL = 4 times area of \triangle MNO
 - d) Area of \triangle JKL = $\frac{1}{3}$ area of \triangle MNO
 - e) Area of trapezium KLNO is $\frac{1}{4}$ the area of \triangle JKL

(i) $\{d,e,c\}$ (ii) $\{e,b\}$ (iii) $\{a,b,c\}$ (iv) $\{d,a\}$ (v) $\{d,a,b\}$

54. In the given figure, points E , F and G are the mid-points of sides CD, DB and BC of △BCD. Which of the following are true?

- a) ∆EGF ~ ∆BCD
- b) △GCE ~ △BCD
- c) △FED ~ △BCD
- d) \triangle EFG $\sim \triangle$ BCD
- e) ∆BGF ~ ∆BCD

(i) $\{a,e,b\}$ (ii) $\{b,c,d,e\}$ (iii) $\{a,b\}$ (iv) $\{a,d\}$ (v) $\{a,c\}$

55. The perimeters of two similar triangles are 26 cm and 18 cm respectively. If one side of the first triangle is 9 cm, find the length of the corresponding side of the second triangle.

(i) $6.23 \, \text{cm}$ (ii) $5.23 \, \text{cm}$ (iii) $4.23 \, \text{cm}$ (iv) $8.23 \, \text{cm}$ (v) $7.23 \, \text{cm}$

56. In the given figure, D is a point on side BC of \triangle ABC such that \angle CAB = \angle ADC = 109°, \angle DCA = 20°. Find \angle CAD

(i) 51° (ii) 49° (iii) 50° (iv) 52° (v) 53°

57. LMNO is a square and \triangle LMP is an equilateral triangle. Also, \triangle LNQ is an equilateral triangle. If area of \triangle LMP is 'a' sq.units, then the area of \triangle LNQ is

(i) a^2 sq.units (ii) $\sqrt{3}$ a sq.units (iii) $\frac{1}{2}\sqrt{3}$ a sq.units (iv) 2a sq.units (v) $\frac{1}{2}$ a sq.units

58. ABCD is a cyclic trapezium. Diagonals BD and AC intersect at E. If DA = 18 cm, find BC

(i) 17 cm (ii) 19 cm (iii) 18 cm (iv) 16 cm (v) 20 cm

A vertical stick 12 mlong casts a shadow of 13 mlong on the ground.

59. At the same time, a tower casts the shadow104 mlong on the ground. Find the height of the tower.

(i) 96 m (ii) 95 m (iii) 94 m (iv) 98 m (v) 97 m

In the given figure, $\triangle EFG$, TU \parallel FG such that

60. area of \triangle ETU = area of TUGF. Find $\frac{ET}{EF}$

(i) $\frac{1}{2}\sqrt[4]{2}$ (ii) 1 (iii) $\frac{1}{2}\sqrt{-1}$ (iv) $\frac{1}{2}\sqrt{5}$ (v) $\frac{1}{2}\sqrt{2}$

61. In the given figure, \angle GDE = \angle FDG and DG \parallel HF and DE = 18 cm, EG = 10 cm and GF = 10 cm. Find DH

(i) 20.00 cm (ii) 17.00 cm (iii) 16.00 cm (iv) 19.00 cm (v) 18.00 cm

62. In the given figure, JL is the angular bisector of $\angle J \& \angle L$ IJ = 20 cm, JK = 20 cm and KL = 20 cm. Find LI

(i) 22.00 cm (ii) 18.00 cm (iii) 19.00 cm (iv) 20.00 cm (v) 21.00 cm

63. In the given figure, ABC is a triangle and 'O' is a point inside △ABC. The angular bisector of ∠BOA, ∠COB & ∠AOC meet AB, BC & CA at D, E & F respectively . Then

(i) AD . BE . CF = DB . EC . FA (ii) AD . BE . CF = OD . OE . OF (iii) AD . BE . CF = AB . BC . CA

(iv) AD . BE . CF = DE . EF . FD (v) AD . BE . CF = OA . OB . OC

64. In the given figure, if A, Q, R, S, T, U are equidistant and RP | UB and AB = 28 cm and AP = 11 cm. Find PB

(i) 16.00 cm (ii) 18.00 cm (iii) 17.00 cm (iv) 15.00 cm (v) 19.00 cm

65. From the given figure and values, find x

- (i) (-3,24) (ii) (26,-4) (iii) (-6,23) (iv) (-5,25) (v) (-6,24)
- The ratio of the bases of two triangles ABC and DEF is 10:5.

 If the triangles are equal in area, then the ratio of their heights is
 - (i) 10:2 (ii) 9:5 (iii) 11:5 (iv) 5:10 (v) 10:8

67. If the measures are as shown in the given figure, find GH

(i) 23.0 cm (ii) 25.0 cm (iii) 24.0 cm (iv) 22.0 cm (v) 26.0 cm

In the given figure, the two circles touch each other internally. Diameter OB passes through the centre of the smaller circle. $OX = 9 \ cm, OY = 20 \ cm \ and \ radius \ of \ the \ inner \ circle \ is 5.6 \ cm.$ Find the radius of the outer circle.

(i) 12.44 cm (ii) 13.44 cm (iii) 11.44 cm (iv) 14.44 cm (v) 10.44 cm

Assignment Key						
1) (i)	2) (iv)	3) (ii)	4) (i)	5) (iv)	6) (i)	
7) (iii)	8) (iv)	9) (ii)	10) (ii)	11) (iv)	12) (ii)	
13) (iv)	14) (iii)	15) (v)	16) (v)	17) (iv)	18) (ii)	
19) (iii)	20) (ii)	21) (iv)	22) (iv)	23) (v)	24) (v)	
25) (i)	26) (iii)	27) (v)	28) (i)	29) (i)	30) (v)	
31) (i)	32) (iii)	33) (iii)	34) (iii)	35) (v)	36) (ii)	
37) (i)	38) (iii)	39) (iv)	40) (i)	41) (v)	42) (iv)	
43) (ii)	44) (iii)	45) (ii)	46) (v)	47) (ii)	48) (v)	
49) (iv)	50) (i)	51) (v)	52) (iv)	53) (iii)	54) (ii)	
55) (i)	56) (i)	57) (iv)	58) (iii)	59) (i)	60) (v)	
61) (v)	62) (iv)	63) (i)	64) (iii)	65) (v)	66) (iv)	
67) (iii)	68) (i)					

Copyright © Small Systems Computing Pvt. Ltd.