EduSahara™ Assignment
Name : Complex Trigonometric Expressions Simplification
Chapter : Introduction to Trigonometry
Grade : CBSE Grade X
License : Non Commercial Use
Question
1
1.
1
−
tan
2
θ
1
+
tan
2
θ
=
(i)
sin
2
θ
(ii)
cot
2
θ
(iii)
cos
2
θ
(iv)
tan
2
θ
Question
2
2.
1
−
tan
2
80°
1
+
tan
2
80°
=
(i)
sin
160°
(ii)
tan
160°
(iii)
cos
160°
(iv)
cot
160°
Question
3
3.
1
+
tan
2
θ
1
+
cot
2
θ
=
(i)
cot
2
θ
(ii)
tan
2
θ
(iii)
1
(iv)
cosec
2
θ
(v)
sec
2
θ
Question
4
4.
If
cot
θ
=
3
4
, find
(
1
+
sin
θ
)
(
1
−
sin
θ
)
(
1
−
cos
θ
)
(
1
+
cos
θ
)
(i)
9
14
(ii)
1
2
(iii)
11
16
(iv)
7
16
(v)
9
16
Question
5
5.
If
tan
θ
=
1
5
, find
(
1
+
cos
θ
)
(
1
−
cos
θ
)
(
1
+
sin
θ
)
(
1
−
sin
θ
)
(i)
3
25
(ii)
(
-1
25
)
(iii)
1
27
(iv)
1
25
(v)
1
23
Question
6
6.
Find the value of
(
1
+
sin
θ
)
(
cos
θ
)
+
(
cos
θ
)
(
1
+
sin
θ
)
(i)
2
cosec
θ
(ii)
2
sin
θ
(iii)
2
sec
θ
(iv)
2
cos
θ
Question
7
7.
Find the value of
5
sec
2
θ
−
5
tan
2
θ
(i)
0
(ii)
8
(iii)
5
(iv)
1
(v)
2
Question
8
8.
Find the value of
(
1
+
tan
θ
+
sec
θ
)
(
1
+
cot
θ
−
cosec
θ
)
(i)
0
(ii)
2
(iii)
1
(iv)
5
(v)
3
Question
9
9.
Find the value of
(
cosec
θ
−
cot
θ
)
2
(i)
1
+
cos
θ
1
−
cos
θ
(ii)
1
−
cos
θ
1
+
cos
θ
(iii)
1
+
sin
θ
1
−
sin
θ
(iv)
1
−
sin
θ
1
+
sin
θ
Question
10
10.
Which of the following are true?
a)
(
sec
θ
−
tan
θ
)
2
=
1
+
sin
θ
1
−
sin
θ
b)
(
sec
θ
−
tan
θ
)
2
=
1
−
sin
θ
1
+
sin
θ
c)
cos
θ
1
−
sin
θ
+
cos
θ
1
+
sin
θ
=
2
d)
cos
θ
cosec
θ
+
1
+
cos
θ
cosec
θ
−
1
=
2
tan
θ
e)
1
+
sin
θ
cos
θ
+
cos
θ
1
+
sin
θ
=
2
sec
θ
(i)
{a,b}
(ii)
{b,d,e}
(iii)
{a,b,d}
(iv)
{c,d}
(v)
{a,c,e}
Question
11
11.
Which of the following are true?
a)
cos
θ
1
+
sin
θ
=
1
−
sin
θ
cos
θ
b)
cos
3
θ
+
sin
3
θ
=
(
sin
θ
+
cos
θ
)
(
1
−
sin
θ
cos
θ
)
c)
(
sin
θ
−
cos
θ
)
2
=
1
+
sin
2
θ
d)
sec
θ
1
+
cosec
θ
=
1
−
cosec
θ
sec
θ
e)
cos
3
θ
−
sin
3
θ
=
(
sin
θ
+
cos
θ
)
(
1
−
sin
θ
cos
θ
)
f)
(
sin
θ
+
cos
θ
)
2
+
(
sin
θ
−
cos
θ
)
2
=
2
g)
(
sin
θ
+
cos
θ
)
2
=
1
+
sin
2
θ
(i)
{d,g,a}
(ii)
{e,c,f}
(iii)
{d,b}
(iv)
{c,a}
(v)
{a,b,f,g}
Question
12
12.
If
Q
,
R
and
S
are the interior angles of a triangle, then
sin
(
Q + R
2
)
=
(i)
cos
(
S
2
)
(ii)
sin
(
S
2
)
(iii)
cos
(
Q
2
)
(iv)
sin
(
Q
2
)
(v)
sin
S
Question
13
13.
If
r
=
cos
θ
+
sin
θ
,
s
=
cos
θ
sin
θ
then
(i)
r
2
=
(
2
s
+
1
)
(ii)
(
r
2
+
s
2
)
=
0
(iii)
(
r
2
−
s
2
)
=
1
(iv)
(
r
2
+
s
2
)
=
1
(v)
r
2
=
(
−
2
s
+
1
)
Question
14
14.
If
x
=
cos
θ
+
sin
θ
,
y
=
cos
θ
−
sin
θ
then
(i)
(
x
2
+
y
2
)
=
1
(ii)
(
x
2
+
y
2
)
=
0
(iii)
(
x
2
−
y
2
)
=
1
(iv)
(
x
2
+
y
2
)
=
2
(v)
(
x
2
−
y
2
)
=
2
Question
15
15.
a)
2
q
r
=
g
2
sin
2
θ
b)
(
q
2
+
r
2
)
=
g
2
c)
(
q
+
r
)
2
=
g
2
d)
(
q
2
−
r
2
)
=
g
2
e)
q
2
r
2
=
tan
2
θ
(i)
{a,b,e}
(ii)
{c,d,e}
(iii)
{c,a,b}
(iv)
{d,b}
(v)
{c,a}
Question
16
16.
If
d
=
q
cos
θ
+
r
sin
θ
and
e
=
q
sin
θ
−
r
cos
θ
, then
(i)
(
d
2
+
e
2
)
=
(
q
2
+
r
2
)
(ii)
(
d
2
−
e
2
)
=
(
q
2
−
r
2
)
(iii)
(
q
2
+
d
2
)
=
(
r
2
+
e
2
)
(iv)
d
e
=
q
r
Assignment Key
1) (iii)
2) (iii)
3) (ii)
4) (v)
5) (iv)
6) (iii)
7) (iii)
8) (ii)
9) (ii)
10) (ii)
11) (v)
12) (i)
13) (i)
14) (iv)
15) (i)
16) (i)