

A tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower

1. is found to be 60° . If the height of the tower is 180 m, find the distance between the observation point and the top of the tower.

(i) $180\sqrt{2}$ m (ii) $120\sqrt{3}$ m (iii) 360 m (iv) $120\sqrt{18}$ m (v) 120 m

A tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower

2. is found to be 30° . If the height of the tower is 90 m, find the distance between the observation point and the foot of the tower.

(i) $135\sqrt{2}$ m (ii) $90\sqrt{3}$ m (iii) 270 m (iv) $90\sqrt{18}$ m (v) 90 m

A radio tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the radio tower is found to be 60° . If the distance between the point and the foot of the radio tower is 140 m, find the distance between the observation point and the top of the radio tower.

(i) 280 m (ii) 277 m (iii) 283 m (iv) 281 m (v) 279 m

A chimney stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the chimney is found to be 45° . If the distance between the point and the foot of the chimney is 120 m, find the height of the chimney.

(i) 122 m (ii) 119 m (iii) 117 m (iv) 120 m (v) 121 m

A radio tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the radio tower is found to be 30° . If the distance between the point and the top of the radio tower is 60 m, find the height of the radio tower.

(i) 29 m (ii) 30 m (iii) 28 m (iv) 32 m (v) 31 m

A building stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the building is found to be 45° . If the distance between the point and the top of the building is 10 m, find the distance between the observation point and the foot of the building.

(i) $\frac{5}{2}\sqrt{12}$ m (ii) 10 m (iii) $10\sqrt{3}$ m (iv) $5\sqrt{2}$ m (v) 5 m

7. Two boys are on opposite sides of a tower of 70 m height. They measure the angle of elevation of the top of the tower as 45° and 60° respectively. Find the distance between the two boys.

(i) $\frac{9800}{3}$ m (ii) $(2+\sqrt{3})$ m (iii) $(70\sqrt{6} + \frac{70}{3}\sqrt{18})$ m (iv) $(70 + \frac{70}{3}\sqrt{3})$ m (v) $(35\sqrt{6} + 35\sqrt{2})$ m

8. A person, walking 50 m from a point toward a flagpost, observes that its angle of elevation changes from 45° to 60° . Find the height of the flagpost.

(i) $(2+\sqrt{3})$ m (ii) 3750 m (iii) $(75\sqrt{6} + 25\sqrt{18})$ m (iv) $(75 + 25\sqrt{3})$ m (v) $(\frac{75}{2}\sqrt{6} + \frac{75}{2}\sqrt{2})$ m

A flagstaff stands on the top of a building at a distance of 45 m away from the foot of building . The angle of elevation of the top of the flagstaff is 60° and the angle of elevation of the top of the building is 30° . Find the height of the flagstaff .

(i) 90 m (ii) $30\sqrt{3}$ m (iii) $45\sqrt{2}$ m (iv) 30 m (v) $30\sqrt{18}$ m

A tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower 10. is found to be $\sin^{-1}\left(\frac{6}{7}\right)$. If the distance between the point and the top of the tower is 130 m, find the height of the tower.

(i) 135.43 m (ii) 127.43 m (iii) 89.43 m (iv) 111.43 m (v) 96.43 m

A tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower 11. is found to be $\cos^{-1}\left(\frac{1}{3}\right)$. If the distance between the point and the foot of the tower is 50 m, find the distance between the observation point and the top of the tower.

(i) 146.00 m (ii) 133.00 m (iii) 167.00 m (iv) 150.00 m (v) 168.00 m

A tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower 12. is found to be $\tan^{-1}\left(\frac{2}{9}\right)$. If the distance between the point and the foot of the tower is 70 m, find the height of the tower.

(i) 15.56 m (ii) 12.56 m (iii) 18.56 m (iv) 10.56 m (v) 20.56 m

A tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower 13. is found to be $\operatorname{cosec}^{-1}\left(\frac{3}{2}\right)$. If the distance between the point and the top of the tower is 50 m, find the height of the tower.

(i) 36.33 m (ii) 38.33 m (iii) 28.33 m (iv) 33.33 m (v) 30.33 m

A tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower 14. is found to be $\sec^{-1}\left(\frac{4}{3}\right)$. If the distance between the point and the top of the tower is 150 m, find the distance between the observation point and the foot of the tower.

(i) 110.50 m (ii) 89.50 m (iii) 112.50 m (iv) 118.50 m (v) 134.50 m

A tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower

15. is found to be $\cot^{-1} \left(\frac{3}{4} \right)$. If the height of the tower is 180 m, find the distance between

the observation point and the foot of the tower.

(i) 113.00 m (ii) 150.00 m (iii) 117.00 m (iv) 152.00 m (v) 135.00 m

A tower stands vertically on the ground.

The height of the tower is 90 m.

16. The distance between the observation point and its top is 180 m.

Find the angle of elevation.

(i) 90° (ii) 75° (iii) 60° (iv) 30° (v) 45°

The upper part of a tree is broken into two parts without being detached. It makes an angle of 30° with the

17. ground. The top of the tree touches the ground at a distance of 150 m from the foot of the tree. Find the height of the tree before it was broken.

(i) 282.82 m (ii) 259.82 m (iii) 262.82 m (iv) 244.82 m (v) 253.82 m

There are two temples one on each bank of a river, just opposite to each other. One of the temples is 180 m high.

18. As observed from the top of this temple, the angles of depression of the top and foot of the other temple are 45° and 60° respectively. Find the width of the river.

(i) 100.92 m (ii) 78.92 m (iii) 103.92 m (iv) 119.92 m (v) 127.92 m

There are two temples one on each bank of a river, just opposite to each other. One of the temples is 10 m high.

19. As observed from the top of this temple, the angles of depression of the top and foot of the other temple are 30° and 60° respectively. Find the height of the other temple.

(i) 4.67 m (ii) 8.67 m (iii) 6.67 m (iv) 5.67 m (v) 7.67 m

20. An observer 1.6 m tall, is 60 m away from a tower. The angle of elevation of the top of the tower from her eyes is 60° . Find the height of the tower.

(i) 105.53 m (ii) 112.53 m (iii) 80.53 m (iv) 87.53 m (v) 121.53 m

Two poles of equal height are standing opposite to each other on either side of a road which is 30 m wide.

21. From a point between them on the road, the angles of elevation of the top of the poles are 30° and 45° respectively. Find the height of each pole and the distances of the point from the two poles.

(i) height = 10.98 m, distances away = 10.98 m, 19.02 m

(ii) height = 12.98 m, distances away = 12.98 m, 21.02 m

(iii) height = 9.98 m, distances away = 9.98 m, 18.02 m

(iv) height = 11.98 m, distances away = 11.98 m, 20.02 m

(v) height = 8.98 m, distances away = 8.98 m, 17.02 m

22. From the top of a light house which is 60 m high from the sea level, the angles of depression of two ships are 60° and 30° . If one ship is exactly behind the other on the same side of the light house, find the distance between the two ships.

(i) 72.27 m (ii) 64.27 m (iii) 74.27 m (iv) 69.27 m (v) 66.27 m

23. From the top of a 9 m high building, the angle of elevation of the top of a cable tower is 45° and the angle of depression of its foot is 30° . Find the height of the cable tower.

(i) 21.59 m (ii) 24.59 m (iii) 19.59 m (iv) 29.59 m (v) 27.59 m

24. The angle of elevation of the top of a building from the foot of a tower is 45° . The angle of elevation of the top of the tower from the foot of the building is 30° . If the height of the tower is 95 m, find the height of the building .

(i) 164.53 m (ii) 166.53 m (iii) 140.53 m (iv) 148.53 m (v) 187.53 m

A flag is hoisted at the top of a building . From a point on the ground, the angle of elevation of the top of the flag staff is 45° and the angle of elevation of the top of the building is 30° . If the height of the building is 9 m, find the height of the flag staff .

(i) 4.59 m (ii) 5.59 m (iii) 8.59 m (iv) 6.59 m (v) 7.59 m

A flag is hoisted at the top of a building . From a point on the ground, the angle of elevation of the top of the flag staff is 45° and the angle of elevation of the top of the building is 30° . If the height of the flag staff is 10 m, find the height of the building .

(i) 16.66 m (ii) 13.66 m (iii) 8.66 m (iv) 10.66 m (v) 18.66 m

Assignment Key

1) (ii)	2) (ii)	3) (i)	4) (iv)	5) (ii)	6) (iv)
7) (iv)	8) (iv)	9) (ii)	10) (iv)	11) (iv)	12) (i)
13) (iv)	14) (iii)	15) (v)	16) (iv)	17) (ii)	18) (iii)
19) (iii)	20) (i)	21) (i)	22) (iv)	23) (ii)	24) (i)
25) (iv)	26) (ii)				