Name: Heights and Distances

Chapter: Some Applications of Trigonometry

Grade: CBSE Grade X

License: Non Commercial Use

Achimney stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the

1. chimney is found to be 30° . If the height of the chimney is 50 m, find the distance between the observation point and the top of the chimney.

(i) 100 m (ii) 98 m (iii) 101 m (iv) 102 m (v) 99 m

Atowerstands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower

2. is found to be 60°. If the height of the tower is 170 m, find the distance between the observation point and the foot of the tower.

(i)
$$\frac{170}{3}\sqrt{18}\,\text{m}$$
 (ii) $\frac{170}{3}\sqrt{3}\,\text{m}$ (iii) $85\sqrt{2}\,\text{m}$ (iv) $\frac{170}{3}\,\text{m}$ (v) 170 m

Achimney stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the

3. chimney is found to be 30°. If the distance between the point and the foot of the chimney is 200 m, find the distance between the observation point and the top of the chimney.

- (i) $\frac{400}{3}$ m (ii) $200\sqrt{2}$ m (iii) $\frac{400}{3}\sqrt{3}$ m (iv) 400 m (v) $\frac{400}{3}\sqrt{18}$ m
- 4. Atowerstands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower is found to be 30°. If the distance between the point and the foot of the tower is 90 m, find the height of the tower.

- (i) $30\sqrt{3}\,\text{m}$ (ii) $45\sqrt{2}\,\text{m}$ (iii) $30\,\text{m}$ (iv) $30\sqrt{18}\,\text{m}$ (v) $90\,\text{m}$
- Abuilding stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the 5. building is found to be 30°. If the distance between the point and the top of the building is 120 m, find the height of the building.

(i) 62 m (ii) 60 m (iii) 59 m (iv) 61 m (v) 57 m

Aradio towerstands vertically on the ground. From a point on the ground, the angle of elevation of the top of the

6. radio tower is found to be 45°. If the distance between the point and the top of the radio tower is 70 m, find the distance between the observation point and the foot of the radio tower.

- (i) $\frac{35}{2}\sqrt{12}\,\text{m}$ (ii) 35 m (iii) 70 m (iv) $35\sqrt{2}\,\text{m}$ (v) $70\sqrt{3}\,\text{m}$
- 7. Two boys are on opposite sides of a tower of 160 m height. They measure the angle of elevation of the top of the tower as 45° and 30° respectively. Find the distance between the two boys.

- (i) $(-2-\sqrt{3})$ m (ii) $(160+160\sqrt{3})$ m (iii) $(160\sqrt{6}+160\sqrt{18})$ m (iv) $(80\sqrt{6}+240\sqrt{2})$ m (v) (-51200) m
- A person, walking 25 m from a point toward a flagpost , observes that its angle of elevation changes from 30° to 45°. Find the height of the flagpost .

(i) $(2+\sqrt{3})$ m (ii) $(\frac{75}{4}\sqrt{2}+\frac{25}{4}\sqrt{6})$ m (iii) $(\frac{25}{2}\sqrt{3}+\frac{25}{2})$ m (iv) $\frac{625}{2}$ m (v) $(\frac{25}{2}\sqrt{18}+\frac{25}{2}\sqrt{6})$ m

A flagstaff stands on the top of a building at a distance of 15 m away from the foot of building. The angle of 9. elevation of the top of the flagstaff is 60° and the angle of elevation of the top of the building is 45°. Find the height of the flagstaff.

(i) $(2-\sqrt{3})$ m (ii) $(\frac{45}{2}\sqrt{2}-\frac{15}{2}\sqrt{6})$ m (iii) 450 m (iv) $(15\sqrt{18}-15\sqrt{6})$ m (v) $(15\sqrt{3}-15)$ m

Atower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower 10. is found to be $\sin^{(-1)}(\frac{2}{3})$. If the height of the tower is 30 m, find the distance between

the observation point and the top of the tower.

(i) 45.00 m (ii) 48.00 m (iii) 40.00 m (iv) 50.00 m (v) 42.00 m

Atower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower 11. is found to be $\cos^{(-1)}(\frac{1}{3})$. If the distance between the point and the foot of the tower is 200 m,

find the distance between the observation point and the top of the tower.

(i) 595.00 m (ii) 600.00 m (iii) 616.00 m (iv) 622.00 m (v) 583.00 m

Atowerstands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower 12. is found to betan $(-1)(\frac{5}{a})$. If the height of the tower is 70 m, find the distance between

the observation point and the foot of the tower.

(i) 121.00 m (ii) 100.00 m (iii) 126.00 m (iv) 128.00 m (v) 150.00 m

Atower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower 13. is found to $becosec^{\binom{(-1)}{3}}$. If the distance between the point and the top of the tower is 20 m, find the height of the tower.

(i) 12.00 m (ii) 17.00 m (iii) 15.00 m (iv) 7.00 m (v) 9.00 m

Atowerstands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower 14. is found to be $\sec^{(-1)}(\frac{9}{5})$. If the distance between the point and the top of the tower is 50 m,

find the distance between the observation point and the foot of the tower.

(i) 30.78 m (ii) 22.78 m (iii) 32.78 m (iv) 24.78 m (v) 27.78 m

Atower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower 15. is found to becot $(-1)(\frac{2}{3})$. If the height of the tower is 80 m, find the distance between the observation point and the foot of the tower. (i) 50.33 m (ii) 53.33 m (iii) 56.33 m (iv) 58.33 m (v) 48.33 m Atower stands vertically on the ground. The height of the tower is $140\sqrt{3}$ m. 16. The distance between the observation point and its top is 280 m. Find the angle of elevation. (i) 45° (ii) 105° (iii) 30° (iv) 60° (v) 90° The upper part of a tree is broken into two parts without being detatched. It makes an angle of 30° with the 17. ground. The top of the tree touches the ground at a distance of 10 m from the foot of the tree. Find the height of the tree before it was broken. (i) 20.32 m (ii) 12.32 m (iii) 17.32 m (iv) 14.32 m (v) 22.32 m There are two temples one on each bank of a river, just opposite to each other. One of the temples is 80 m high. 18. As observed from the top of this temple, the angles of depression of the top and foot of the other temple are 30° and 60° respectively. Find the width of the river . (i) 46.19 m (ii) 49.19 m (iii) 43.19 m (iv) 51.19 m (v) 41.19 m There are two temples one on each bank of a river, just opposite to each other. One of the temples is 140 m high. 19. As observed from the top of this temple, the angles of depression of the top and foot of the other temple are 30° and 60° respectively. Find the height of the other temple. (i) 96.33 m (ii) 93.33 m (iii) 90.33 m (iv) 88.33 m (v) 98.33 m An observer 1.9 m tall, is 90 m away from a tower . The angle of elevation of the top of the tower from her eyes is 60°. Find the height of the tower. (i) 157.79 m (ii) 172.79 m (iii) 169.79 m (iv) 144.79 m (v) 143.79 m Two poles of equal height are standing opposite to each other on either side of a road which is 35 m wide. From a 21. point between them on the road, the angles of elevation of the top of the poles are 30° and 60° respectively. Find the height of each pole and the distances of the point from the two poles. (i) height = 13.16 m, distances away = 6.75 m, 24.25 m (ii) height = 16.16 m, distances away = 9.75 m, 27.25 m (iii) height = 14.16 m, distances away = 7.75 m, 25.25 m (iv) height = 17.16 m, distances away = 10.75 m, 28.25 m(v) height = 15.16 m, distances away = 8.75 m, 26.25 m

From the top of a light house which is 45 m high from the sea level, the angles of depression of two ships are 60° 22. and 30°. If one ship is exactly behind the other on the same side of the light house, find the distance between

From the top of a 18 m high building, the angle of elevation of the top of a cable tower is 45° and the angle of

(i) 48.96 m (ii) 46.96 m (iii) 56.96 m (iv) 54.96 m (v) 51.96 m

(i) 44.17 m (ii) 46.17 m (iii) 49.17 m (iv) 54.17 m (v) 52.17 m

depression of its foot is 30°. Find the height of the cable tower.

the two ships.

- The angle of elevation of the top of a building from the foot of a tower is 60°. The angle of elevation of the top of the tower from the foot of the building is 30°. If the height of the tower is 95 m, find the height of the building .
 - (i) 282.98 m (ii) 300.98 m (iii) 284.98 m (iv) 289.98 m (v) 261.98 m
- A flag is hoisted at the top of a building . From a point on the ground, the angle of elevation of the top of the flag 25. staff is 60° and the angle of elevation of the top of the building is 30°. If the height of the building is 6 m, find the height of the flag staff .
 - (i) 17.00 m (ii) 15.00 m (iii) 9.00 m (iv) 12.00 m (v) 7.00 m
- A flag is hoisted at the top of a building . From a point on the ground, the angle of elevation of the top of the flag 26. staff is 60° and the angle of elevation of the top of the building is 30°. If the height of the flag staff is 7 m, find the height of the building .
 - (i) 3.50 m (ii) 2.50 m (iii) 4.50 m (iv) 1.50 m (v) 5.50 m

Assignment Key						
1) (i)	2) (ii)	3) (iii)	4) (i)	5) (ii)	6) (iv)	
7) (ii)	8) (iii)	9) (v)	10) (i)	11) (ii)	12) (iii)	
13) (i)	14) (v)	15) (ii)	16) (iv)	17) (iii)	18) (i)	
19) (ii)	20) (i)	21) (v)	22) (v)	23) (iii)	24) (iii)	
25) (iv)	26) (i)					

Copyright © Small Systems Computing Pvt. Ltd.