

Name : Matrix Addition and Subtraction Concepts Chapter : Matrices Grade : ICSE Grade X License : Non Commercial Use

EduSahara[™] Assignment

1. Matrix $A = \begin{bmatrix} 1 & -2 & -3 \end{bmatrix}$ is the additive inverse of

L	-204							
		1 -4 2						
(i) [-1 2 2 2 0 -4	(ii)	-123	(iii)	-123	(iv)	-126	(v)	-123
2 0 -4	ļ 4	20-4		20-3		20-4		20-4

2. If the elements of matrix A are multiplied with -1 , we get

(i) additive inverse of A (ii) multiplicative identity of A (iii) additive identity of A

(iv) multiplicative inverse of A

-1 4 -4

3. If the elements of matrix A are multiplied with 0 , we get

(i) additive identity of A (ii) additive inverse of A (iii) multiplicative inverse of A

- (iv) multiplicative identity of A
- 4. A4 × 2 matrix has
 - a) 4 rows and 2 columns
 - b) 4 rows and 8 columns
 - c) 6 rows and 2 columns
 - d) 2 rows and 4 columns

(i) {a} (ii) {b,a} (iii) {c,a} (iv) {d,b,a}

5. Which of the following are true for matrices A and B?

a) If A and B can be multiplied, they must have the same order

- b) The orders of $(A \times B)$ and $(B \times A)$ are same
- c) If AB = 0, A = 0 or B = 0 or both A and B are zero matrices

d) If A and B can be added, they must have the same order

(i) {d} (ii) {b,d} (iii) {c,a,d} (iv) {a,d}

```
6. If(A+B) = 0, then
```

```
a) B is the additive identity of A
```

- b) B is the additive inverse of A
- c) A is the additive inverse of ${\sf B}$
- d) A is the additive identity of B
- (i) {d,c} (ii) {a,c,b} (iii) {b,c} (iv) {a,d,b} (v) {a,b}

7. Which of the following are true ?

- a) The order of $(A \times B)$ and $(B \times A)$ is same
- b) If matrices A & B can be added, they must have the same order
- c) If AB = 0, then A = 0 or B = 0 or both A & B are 0
- d) If matrices A & B can be multiplied, they must have the same order

8. If
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 and $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$,
then $(A+B) =$
(i) $\begin{bmatrix} a_{11} + b_{11} & a_{21} + b_{21} \\ a_{12} + b_{12} & a_{22} + b_{22} \end{bmatrix}$ (ii) $\begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$ (iii) $\begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$ (iii) $\begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$ (iii) $\begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$ (iii)

(iv)
$$\begin{bmatrix} a_{11} + b_{11} & a_{21} + b_{12} \\ a_{12} + b_{21} & a_{22} + b_{22} \end{bmatrix}$$

$$\begin{array}{c} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array} \begin{array}{c} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \\ \end{array}$$

$$\begin{array}{c} b_{11} & b_{12} & b_{13} \\ b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \\ \end{array}$$

$$\begin{array}{c} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \\ \end{array}$$

$$\begin{array}{c} b_{11} & b_{11} & a_{21} + b_{21} & a_{31} + b_{31} \\ a_{12} + b_{12} & a_{22} + b_{22} & a_{32} + b_{32} \\ a_{13} + b_{13} & a_{23} + b_{23} & a_{33} + b_{33} \end{array} \begin{array}{c} (ii) \begin{bmatrix} a_{11} + b_{11} & a_{21} + b_{12} & a_{31} + b_{13} \\ a_{12} + b_{21} & a_{22} + b_{22} & a_{32} + b_{32} \\ a_{13} + b_{13} & a_{23} + b_{23} & a_{33} + b_{33} \end{array} \begin{array}{c} (iii) \begin{bmatrix} a_{12} + b_{21} & a_{21} + b_{12} & a_{12} + b_{23} \\ a_{13} + b_{31} & a_{23} + b_{32} & a_{33} + b_{33} \end{array} \end{array}$$

$$\begin{array}{c} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} & a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33} \\ a_{13}b_{11} + a_{32}b_{21} + a_{33}b_{31} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} & a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33} \end{array}$$

$$\begin{array}{c} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{31}b_{11} + a_{32}b_{21} + a_{32}b_{21} + a_{32}b_{22} + a_{32}b_{22} + a_{33}b_{32} & a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33} \end{array}$$

$$a_{31} + b_{31} \quad a_{32} + b_{32} \quad a_{33} + b_{33}$$

10. If A = $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ and B = $\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$,
then (A-B) =
(i) $\begin{bmatrix} a_{11} - b_{11} & a_{21} - b_{12} \\ a_{12} - b_{21} & a_{22} - b_{22} \end{bmatrix}$ (ii) $\begin{bmatrix} a_{11} - b_{11} & a_{21} - b_{21} \\ a_{12} - b_{12} & a_{22} - b_{22} \end{bmatrix}$ (iii) $\begin{bmatrix} a_{11} - b_{11} & a_{21} - b_{21} \\ a_{12} - b_{12} & a_{22} - b_{22} \end{bmatrix}$ (iv) $\begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} \\ a_{21} - b_{21} & a_{22} - b_{22} \end{bmatrix}$

$$\begin{array}{c} a_{11} \quad a_{12} \quad a_{23} \\ a_{21} \quad a_{22} \quad a_{23} \\ a_{31} \quad a_{32} \quad a_{33} \end{array} \right] \text{ and } B = \left[\begin{array}{c} b_{21} \quad b_{22} \quad b_{23} \\ b_{21} \quad b_{22} \quad b_{23} \end{array} \right], \\ b_{31} \quad b_{32} \quad b_{33} \end{array}$$

$$\begin{array}{c} \text{then } (A-B) = \\ (i) \left[\begin{array}{c} a_{21} - b_{21} & a_{12} - b_{12} & a_{13} - b_{13} \\ a_{21} - b_{21} & a_{22} - b_{22} & a_{23} - b_{23} \\ a_{31} - b_{31} & a_{32} - b_{32} & a_{33} - b_{33} \end{array} \right] (ii) \left[\begin{array}{c} a_{12} - b_{12} & a_{21} - b_{21} & a_{22} - b_{22} \\ a_{23} - b_{31} & a_{32} - b_{32} & a_{33} - b_{33} \end{array} \right] \\ (iii) \left[\begin{array}{c} a_{12} - b_{12} & a_{22} - b_{22} & a_{23} - b_{23} \\ a_{13} - b_{31} & a_{22} - b_{22} & a_{32} - b_{23} \end{array} \right] \\ (iii) \left[\begin{array}{c} a_{12} - b_{21} & a_{22} - b_{22} & a_{32} - b_{23} \\ a_{13} - b_{13} & a_{23} - b_{23} & a_{33} - b_{33} \end{array} \right] \\ (iii) \left[\begin{array}{c} a_{12} - b_{21} & a_{22} - b_{22} & a_{32} - b_{23} \\ a_{13} - b_{31} & a_{23} - b_{32} & a_{33} - b_{33} \end{array} \right] \\ (iii) \left[\begin{array}{c} a_{12} - b_{21} & a_{22} - b_{22} & a_{32} - b_{23} \\ a_{13} - b_{31} & a_{23} - b_{32} & a_{33} - b_{33} \end{array} \right] \\ (iv) \left[\begin{array}{c} a_{21} b_{11} + a_{12} b_{21} + a_{13} b_{31} & a_{11} b_{12} + a_{12} b_{22} + a_{13} b_{32} & a_{11} b_{13} + a_{12} b_{23} + a_{13} b_{33} \\ (iv) \left[\begin{array}{c} a_{21} b_{11} + a_{22} b_{21} + a_{23} b_{31} & a_{21} b_{12} + a_{22} b_{22} + a_{23} b_{32} & a_{21} b_{13} + a_{22} b_{23} + a_{23} b_{33} \end{array} \right] \\ a_{31} b_{11} + a_{32} b_{21} + a_{32} b_{31} & a_{31} b_{12} + a_{32} b_{22} + a_{33} b_{32} \end{array} \right]$$

Which of the following matrices is comparable to the

12. given matrix
$$\begin{bmatrix} 99\\ 84 \end{bmatrix}$$
?
(i) $\begin{bmatrix} 832\\ 145\\ 825 \end{bmatrix}$ (ii) $\begin{bmatrix} 68\\ 98 \end{bmatrix}$ (iii) $\begin{bmatrix} 14\\ 14 \end{bmatrix}$ (iv) $\begin{bmatrix} 85\\ 58\\ 41 \end{bmatrix}$ (v) $\begin{bmatrix} 191\\ 736 \end{bmatrix}$
537

13. Which of the following matrices can be added to $\begin{bmatrix} 21\\98 \end{bmatrix}$?

$$\begin{array}{c} 643 \\ (i) \begin{bmatrix} 255 \\ 672 \\ 524 \end{array} \\ \begin{array}{c} (ii) \\ 57 \end{array} \\ \begin{array}{c} 67 \\ 57 \end{array} \\ \begin{array}{c} (iii) \\ 57 \end{array} \\ \begin{array}{c} 14 \\ 59 \\ 42 \end{array} \\ \begin{array}{c} (iv) \\ 218 \end{array} \\ \begin{array}{c} 471 \\ 218 \end{array} \\ \begin{array}{c} (v) \\ 29 \end{array} \\ \end{array}$$

14. Which of the following pairs of matrices are comparable?

(i)
$$\begin{bmatrix} 3 & 0 \\ -1 & -2 \end{bmatrix}$$
, $\begin{bmatrix} -4 & 4 \\ 0 & 3 \\ 4 & -8 \end{bmatrix}$ (ii) $\begin{bmatrix} 3 & 0 \\ -1 & -2 \end{bmatrix}$, $\begin{bmatrix} -9 & -5 \\ 9 & 3 \end{bmatrix}$ (iii) $\begin{bmatrix} 3 & 0 \\ -1 & -2 \end{bmatrix}$, $\begin{bmatrix} -6 & -3 & 3 \\ 1 & 6 & 0 \end{bmatrix}$ (iv) $\begin{bmatrix} 3 & 0 \\ -1 & -2 \end{bmatrix}$, $\begin{bmatrix} 9 & 6 \end{bmatrix}$
(v) $\begin{bmatrix} -6 & -3 & 3 \\ 1 & 6 & 0 \end{bmatrix}$, $\begin{bmatrix} -4 & 4 \\ 0 & 3 \\ 4 & -8 \end{bmatrix}$

15. Find the additive identity of matrix A = $\begin{bmatrix} -59\\ -42 \end{bmatrix}$

(i)
$$\begin{bmatrix} 0 & -3 \\ 0 & 0 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix}$ (iii) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (iv) $\begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$ (v) $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

16. Find the additive identity of matrix A = $\begin{bmatrix} -4 & 2 & 1 \\ -3 & -4 & -3 \\ 3 & 4 & -3 \end{bmatrix}$

(i)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (iii) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix}$ (iv) $\begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (v) $\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Assignment Key										
1) (v)	2) (i)	3) (i)	4) (i)	5) (i)	6) (iii)					
7) (i)	8) (ii)	9) (iv)	10) (iv)	11)(i)	12) (ii)					
13) (ii)	14) (ii)	15) (iii)	16) (ii)							

Copyright © Small Systems Computing Pvt. Ltd.