EduSahara™ Assignment
Name : Geometric Figure Properties and Collinearity
Chapter : Distance and Section Formulae
Grade : ICSE Grade X
License : Non Commercial Use
Question
1
1.
Find the area of the triangle
formed by the points
(
3
,
(
−
3
)
)
,
(
(
−
3
)
,
5
)
and
(
8
,
(
−
1
)
)
(i)
28
(ii)
25
(iii)
27
(iv)
26
(v)
23
Question
2
2.
Find the perimeter of the triangle formed by the points
(
(
−
6
)
,
(
−
8
)
)
,
(
0
,
(
−
7
)
)
and
(
2
,
0
)
(i)
(
√
37
+
√
53
+
16
)
(ii)
(
√
37
+
√
53
+
8
√
2
)
(iii)
(
√
37
+
√
50
+
8
√
2
)
(iv)
(
√
37
+
√
53
+
8
4
√
2
)
(v)
(
√
37
+
√
56
+
8
√
2
)
Question
3
3.
Find the lengths of the sides of the triangle formed by the points
(
(
−
7
)
,
5
)
,
(
7
,
3
)
and
(
(
−
8
)
,
(
−
7
)
)
(i)
10
√
2
,
5
√
13
,
√
145
(ii)
10
4
√
2
,
5
√
13
,
√
145
(iii)
10
√
2
,
65
,
√
145
(iv)
10
√
2
,
5
√
13
,
√
148
Question
4
4.
The points
(
(
−
4
)
,
7
)
,
(
(
−
8
)
,
(
−
8
)
)
and
(
(
−
6
+
15
2
√
3
)
,
(
−
1
2
−
2
√
3
)
)
represent
(i)
equilateral triangle
(ii)
isosceles triangle
(iii)
right angled triangle
(iv)
scalene triangle
Question
5
5.
The points
(
8
,
(
−
2
)
)
,
(
2
,
(
−
6
)
)
and
(
65
7
,
(
−
73
7
)
)
represent
(i)
right angle triangle
(ii)
equilateral triangle
(iii)
scalene triangle
(iv)
isosceles triangle
(v)
collinear points
Question
6
6.
The points
(
(
−
5
)
,
(
−
6
)
)
,
(
(
−
2
)
,
(
−
2
)
)
,
(
2
,
(
−
5
)
)
and
(
(
−
1
)
,
(
−
9
)
)
represent
(i)
parallelogram
(ii)
square
(iii)
rhombus
(iv)
trapezium
(v)
rectangle
Question
7
7.
The points
(
(
−
5
)
,
(
−
4
)
)
,
(
2
,
(
−
4
)
)
,
(
6
,
(
−
1
)
)
and
(
(
−
1
)
,
(
−
1
)
)
represent
(i)
parallelogram
(ii)
rectangle
(iii)
square
(iv)
trapezium
(v)
rhombus
Question
8
8.
The points
(
(
−
5
)
,
(
−
1
)
)
,
(
3
,
(
−
1
)
)
,
(
3
,
2
)
and
(
(
−
5
)
,
2
)
represents
(i)
rhombus
(ii)
trapezium
(iii)
rectangle
(iv)
square
(v)
parallelogram
Question
9
9.
The points
(
8
,
8
)
,
(
(
−
6
)
,
4
)
and
(
4
,
0
)
represent
(i)
right angle triangle
(ii)
equilateral triangle
(iii)
collinear points
(iv)
scalene triangle
(v)
isosceles triangle
Question
10
10.
The points
(
(
−
4
)
,
(
−
4
)
)
,
(
0
,
(
−
1
)
)
and
(
3
,
(
−
5
)
)
represent
(i)
equilateral triangle
(ii)
isosceles right angled triangle
(iii)
scalene triangle
(iv)
collinear points
(v)
right angle triangle
Question
11
11.
The points
(
(
−
6
)
,
(
−
1
)
)
,
(
2
,
(
−
1
)
)
and
(
2
,
2
)
represent
(i)
equilateral triangle
(ii)
collinear points
(iii)
isosceles right angled triangle
(iv)
scalene triangle
(v)
right angle triangle
Question
12
12.
The points
(
(
−
4
)
,
(
−
4
)
)
,
(
3
,
(
−
9
)
)
,
(
10
,
(
−
4
)
)
and
(
3
,
1
)
represent
(i)
trapezium
(ii)
rhombus
(iii)
parallelogram
(iv)
square
(v)
rectangle
Question
13
13.
The points
(
(
−
6
)
,
5
)
,
(
6
,
(
−
5
)
)
and
(
3
2
,
(
−
5
4
)
)
represents
(i)
equilateral triangle
(ii)
collinear points
(iii)
right angle triangle
(iv)
isoceles triangle
Question
14
14.
Find the value of k such that the points
(
(
−
4
)
,
(
−
1
)
)
,
(
(
−
17
8
)
,
5
4
)
and
(k,5)
are collinear
(i)
1
(ii)
-2
(iii)
4
(iv)
0
(v)
2
Question
15
15.
Find the value of k such that the points
(
(
−
4
)
,
2
)
,
(
(
−
1
)
,
11
4
)
and
(4,k)
are collinear
(i)
4
(ii)
7
(iii)
3
(iv)
5
(v)
1
Question
16
16.
Two vertices of a triangle are
(
(
−
2
)
,
(
−
1
)
)
,
(
(
−
7
)
,
7
)
and its centriod is
(
(
−
8
3
)
,
3
)
. Find the coordinates of the third vertex of the triangle
(i)
(
3
,
1
)
(ii)
(
(
−
1
)
,
3
)
(iii)
(
(
−
1
)
,
(
−
3
)
)
(iv)
(
1
,
3
)
(v)
(
1
,
(
−
3
)
)
Question
17
17.
The points B
(
(
−
1
)
,
10
)
and D
(
(
−
9
)
,
8
)
are the opposite vertices
of a square ABCD. Find the other two vertices
(i)
(
(
−
4
)
,
5
)
,
(
(
−
6
)
,
13
)
(ii)
(
(
−
6
)
,
3
)
,
(
(
−
6
)
,
13
)
(iii)
(
(
−
2
)
,
7
)
,
(
(
−
6
)
,
13
)
(iv)
(
(
−
4
)
,
5
)
,
(
(
−
7
)
,
14
)
(v)
(
(
−
3
)
,
4
)
,
(
(
−
6
)
,
13
)
Question
18
18.
Find the coordinates of the midpoints of the sides of the quadrilateral
formed by
(
(
−
4
)
,
(
−
4
)
)
,
(
(
−
1
)
,
1
)
,
(
(
−
6
)
,
2
)
and
(
(
−
6
)
,
(
−
2
)
)
(i)
(
(
−
5
2
)
,
(
−
3
2
)
)
,
(
(
−
7
2
)
,
3
2
)
,
(
(
−
6
)
,
0
)
,
(
(
−
6
)
,
(
−
2
)
)
(ii)
(
(
−
5
2
)
,
(
−
3
2
)
)
,
(
(
−
7
2
)
,
3
2
)
,
(
(
−
8
)
,
(
−
2
)
)
,
(
(
−
5
)
,
(
−
3
)
)
(iii)
(
(
−
1
2
)
,
1
2
)
,
(
(
−
7
2
)
,
3
2
)
,
(
(
−
6
)
,
0
)
,
(
(
−
5
)
,
(
−
3
)
)
(iv)
(
(
−
5
2
)
,
(
−
3
2
)
)
,
(
(
−
7
2
)
,
3
2
)
,
(
(
−
6
)
,
0
)
,
(
(
−
5
)
,
(
−
3
)
)
(v)
(
(
−
5
2
)
,
(
−
3
2
)
)
,
(
(
−
7
2
)
,
3
2
)
,
(
(
−
5
)
,
(
−
1
)
)
,
(
(
−
5
)
,
(
−
3
)
)
Question
19
19.
Find the lengths of the medians of a triangle whose vertices are
(
5
,
(
−
1
)
)
,
(
4
,
(
−
3
)
)
and
(
(
−
2
)
,
(
−
5
)
)
(i)
5
,
5
2
,
1
2
√
205
(ii)
1
2
√
5
,
√
10
,
√
10
(iii)
√
10
,
1
2
√
65
,
1
2
√
5
Question
20
20.
Find the area of the quadrilateral formed by
(
(
−
5
)
,
(
−
2
)
)
,
(
0
,
2
)
,
(
(
−
5
)
,
4
)
and
(
(
−
6
)
,
1
)
(i)
17
(ii)
19
(iii)
18
(iv)
21
(v)
15
Question
21
21.
Three vertices of a parallelogram are
(
(
−
4
)
,
(
−
5
)
)
,
(
3
,
(
−
5
)
)
and
(
6
,
(
−
2
)
)
.
Find the fourth vertex
(i)
(
(
−
3
)
,
(
−
4
)
)
(ii)
(
0
,
(
−
3
)
)
(iii)
(
(
−
1
)
,
(
−
2
)
)
(iv)
(
1
,
0
)
(v)
(
(
−
2
)
,
(
−
1
)
)
Question
22
22.
Find the coordinates of the orthocentre of the triangle
whose vertices are
(
(
−
3
)
,
7
)
,
(
8
,
0
)
and
(
(
−
5
)
,
8
)
(i)
(
220
3
,
401
3
)
(ii)
(
223
3
,
398
3
)
(iii)
(
217
3
,
392
3
)
(iv)
(
226
3
,
395
3
)
(v)
(
229
3
,
404
3
)
Question
23
23.
Find the coordinates of the circumcentre of the triangle
whose vertices are
(
(
−
4
)
,
(
−
7
)
)
,
(
(
−
6
)
,
(
−
7
)
)
and
(
(
−
1
)
,
5
)
(i)
(
(
−
5
)
,
(
−
3
8
)
)
(ii)
(
(
−
3
)
,
13
8
)
(iii)
(
(
−
6
)
,
5
8
)
(iv)
(
(
−
4
)
,
(
−
11
8
)
)
(v)
(
(
−
7
)
,
(
−
19
8
)
)
Question
24
24.
Find the centre of the circle passing through
the points
(
2
,
3
)
,
(
(
−
8
)
,
4
)
and
(
(
−
4
)
,
(
−
5
)
)
(i)
(
(
−
98
43
)
,
(
−
25
86
)
)
(ii)
(
(
−
227
43
)
,
(
−
111
86
)
)
(iii)
(
(
−
141
43
)
,
61
86
)
(iv)
(
(
−
55
43
)
,
233
86
)
(v)
(
(
−
184
43
)
,
147
86
)
Question
25
25.
Find the circumradius of the triangle whose vertices are
(
5
,
4
)
,
(
(
−
8
)
,
(
−
6
)
)
and
(
2
,
(
−
2
)
)
(i)
1
16
4
√
39005
(ii)
1
16
√
39007
(iii)
1
16
√
39002
(iv)
39005
16
(v)
1
16
√
39005
Question
26
26.
Find the radius of the circle passing through the points
(
(
−
4
)
,
8
)
,
(
1
,
4
)
and
(
0
,
(
−
5
)
)
(i)
41
98
√
372
(ii)
41
98
4
√
370
(iii)
7585
49
(iv)
41
98
√
370
(v)
41
98
√
367
Question
27
27.
Find the point which is equidistant from the points
(
(
−
8
)
,
6
)
,
(
(
−
2
)
,
1
)
and
(
1
,
(
−
7
)
)
(i)
(
(
−
1051
66
)
,
(
−
163
22
)
)
(ii)
(
(
−
853
66
)
,
(
−
141
22
)
)
(iii)
(
(
−
919
66
)
,
(
−
207
22
)
)
(iv)
(
(
−
1117
66
)
,
(
−
229
22
)
)
(v)
(
(
−
985
66
)
,
(
−
185
22
)
)
Question
28
28.
Find the relation between x and y if the points
(
x
,
y
)
,
(
4
,
5
)
and
(
(
−
4
)
,
(
−
5
)
)
are collinear
(i)
(
−
10
x
+
8
y
)
=
0
(ii)
(
9
x
+
16
y
−
24
)
=
0
(iii)
(
11
x
+
4
y
+
64
)
=
0
(iv)
(
−
8
x
−
4
y
+
52
)
=
0
(v)
(
2
x
−
12
y
−
52
)
=
0
Question
29
29.
Which of the following sets of points are collinear?
(i)
(
6
,
8
)
,
(
0
,
1
)
,
(
2
,
(
−
5
)
)
(ii)
(
0
,
2
)
,
(
7
,
8
)
,
(
(
−
4
)
,
(
−
8
)
)
(iii)
(
3
,
0
)
,
(
4
,
(
−
2
)
)
,
(
(
−
6
)
,
5
)
(iv)
(
(
−
5
)
,
8
)
,
(
5
,
(
−
4
)
)
,
(
0
,
0
)
(v)
(
(
−
8
)
,
4
)
,
(
3
,
(
−
1
)
)
,
(
(
−
19
12
)
,
13
12
)
Question
30
30.
Find the relation between x and y such that the point P
(
x
,
y
)
is equidistant from points
(
(
−
3
)
,
7
)
and
(
(
−
7
)
,
(
−
4
)
)
(i)
(
7
x
+
22
y
+
7
)
=
0
(ii)
(
−
13
x
−
12
y
+
31
)
=
0
(iii)
(
8
x
+
24
y
+
7
)
=
0
(iv)
(
−
13
x
−
10
y
+
31
)
=
0
(v)
(
8
x
+
22
y
+
7
)
=
0
Assignment Key
1) (iv)
2) (ii)
3) (i)
4) (i)
5) (iv)
6) (ii)
7) (i)
8) (iii)
9) (iv)
10) (ii)
11) (v)
12) (ii)
13) (ii)
14) (i)
15) (i)
16) (iv)
17) (i)
18) (iv)
19) (i)
20) (iii)
21) (iii)
22) (ii)
23) (i)
24) (iii)
25) (v)
26) (iv)
27) (v)
28) (i)
29) (v)
30) (v)