EduSahara™ Assignment
Name : Geometric Figure Properties and Collinearity
Chapter : Distance and Section Formulae
Grade : ICSE Grade X
License : Non Commercial Use
Question
1
1.
Find the area of the triangle
formed by the points
(
8
,
(
−
6
)
)
,
(
5
,
(
−
6
)
)
and
(
(
−
3
)
,
(
−
4
)
)
(i)
3
(ii)
1
(iii)
4
(iv)
2
(v)
6
Question
2
2.
Find the perimeter of the triangle formed by the points
(
6
,
(
−
3
)
)
,
(
8
,
0
)
and
(
(
−
2
)
,
6
)
(i)
(
√
13
+
2
√
34
+
145
)
(ii)
(
√
13
+
2
√
36
+
√
145
)
(iii)
(
√
13
+
2
√
34
+
4
√
145
)
(iv)
(
√
13
+
2
√
34
+
√
145
)
(v)
(
√
13
+
2
√
32
+
√
145
)
Question
3
3.
Find the lengths of the sides of the triangle formed by the points
(
(
−
2
)
,
2
)
,
(
1
,
1
)
and
(
(
−
4
)
,
1
)
(i)
√
10
,
4
,
√
5
(ii)
√
10
,
5
,
√
8
(iii)
4
√
10
,
5
,
√
5
(iv)
√
10
,
5
,
√
5
Question
4
4.
The points
(
5
,
(
−
1
)
)
,
(
(
−
6
)
,
(
−
1
)
)
and
(
(
−
1
2
)
,
(
−
11
2
√
3
−
1
)
)
represent
(i)
isosceles triangle
(ii)
scalene triangle
(iii)
equilateral triangle
(iv)
right angled triangle
Question
5
5.
The points
(
8
,
(
−
8
)
)
,
(
(
−
8
)
,
4
)
and
(
(
−
9
)
,
(
−
14
)
)
represent
(i)
equilateral triangle
(ii)
collinear points
(iii)
isosceles triangle
(iv)
right angle triangle
(v)
scalene triangle
Question
6
6.
The points
(
(
−
4
)
,
(
−
5
)
)
,
(
0
,
(
−
1
)
)
,
(
4
,
(
−
5
)
)
and
(
0
,
(
−
9
)
)
represent
(i)
rectangle
(ii)
parallelogram
(iii)
trapezium
(iv)
square
(v)
rhombus
Question
7
7.
The points
(
(
−
1
)
,
(
−
5
)
)
,
(
5
,
(
−
5
)
)
,
(
7
,
0
)
and
(
1
,
0
)
represent
(i)
square
(ii)
rectangle
(iii)
rhombus
(iv)
parallelogram
(v)
trapezium
Question
8
8.
The points
(
(
−
5
)
,
(
−
3
)
)
,
(
1
,
(
−
3
)
)
,
(
1
,
2
)
and
(
(
−
5
)
,
2
)
represents
(i)
rhombus
(ii)
rectangle
(iii)
trapezium
(iv)
parallelogram
(v)
square
Question
9
9.
The points
(
(
−
2
)
,
4
)
,
(
3
,
8
)
and
(
4
,
6
)
represent
(i)
collinear points
(ii)
isosceles triangle
(iii)
equilateral triangle
(iv)
right angle triangle
(v)
scalene triangle
Question
10
10.
The points
(
(
−
1
)
,
(
−
6
)
)
,
(
3
,
(
−
3
)
)
and
(
6
,
(
−
7
)
)
represent
(i)
isosceles right angled triangle
(ii)
collinear points
(iii)
scalene triangle
(iv)
equilateral triangle
(v)
right angle triangle
Question
11
11.
The points
(
(
−
5
)
,
(
−
5
)
)
,
(
1
,
(
−
5
)
)
and
(
1
,
0
)
represent
(i)
equilateral triangle
(ii)
collinear points
(iii)
scalene triangle
(iv)
isosceles right angled triangle
(v)
right angle triangle
Question
12
12.
The points
(
(
−
3
)
,
(
−
6
)
)
,
(
2
,
(
−
9
)
)
,
(
7
,
(
−
6
)
)
and
(
2
,
(
−
3
)
)
represent
(i)
parallelogram
(ii)
square
(iii)
rectangle
(iv)
rhombus
(v)
trapezium
Question
13
13.
The points
(
6
,
4
)
,
(
(
−
6
)
,
(
−
4
)
)
and
(
6
7
,
4
7
)
represents
(i)
collinear points
(ii)
right angle triangle
(iii)
equilateral triangle
(iv)
isoceles triangle
Question
14
14.
Find the value of k such that the points
(
(
−
8
)
,
(
−
3
)
)
,
(
(
−
36
7
)
,
9
7
)
and
(k,9)
are collinear
(i)
-1
(ii)
-2
(iii)
0
(iv)
1
(v)
2
Question
15
15.
Find the value of k such that the points
(
(
−
7
)
,
(
−
8
)
)
,
(
(
−
61
19
)
,
(
−
16
19
)
)
and
(2,k)
are collinear
(i)
12
(ii)
8
(iii)
9
(iv)
6
(v)
10
Question
16
16.
Two vertices of a triangle are
(
(
−
7
)
,
(
−
8
)
)
,
(
3
,
2
)
and its centriod is
(
(
−
5
3
)
,
(
−
1
3
)
)
. Find the coordinates of the third vertex of the triangle
(i)
(
5
,
(
−
1
)
)
(ii)
(
(
−
1
)
,
(
−
5
)
)
(iii)
(
1
,
5
)
(iv)
(
1
,
(
−
5
)
)
(v)
(
(
−
1
)
,
5
)
Question
17
17.
The points B
(
3
,
(
−
1
)
)
and D
(
(
−
6
)
,
0
)
are the opposite vertices
of a square ABCD. Find the other two vertices
(i)
(
(
−
4
)
,
(
−
7
)
)
,
(
(
−
1
)
,
4
)
(ii)
(
0
,
(
−
3
)
)
,
(
(
−
1
)
,
4
)
(iii)
(
(
−
1
)
,
(
−
6
)
)
,
(
(
−
1
)
,
4
)
(iv)
(
(
−
2
)
,
(
−
5
)
)
,
(
(
−
2
)
,
5
)
(v)
(
(
−
2
)
,
(
−
5
)
)
,
(
(
−
1
)
,
4
)
Question
18
18.
Find the coordinates of the midpoints of the sides of the quadrilateral
formed by
(
(
−
1
)
,
(
−
3
)
)
,
(
3
,
0
)
,
(
(
−
1
)
,
2
)
and
(
(
−
2
)
,
0
)
(i)
(
1
,
(
−
3
2
)
)
,
(
1
,
1
)
,
(
(
−
3
2
)
,
1
)
,
(
(
−
5
2
)
,
(
−
1
2
)
)
(ii)
(
1
,
(
−
3
2
)
)
,
(
1
,
1
)
,
(
(
−
3
2
)
,
1
)
,
(
(
−
3
2
)
,
(
−
3
2
)
)
(iii)
(
1
,
(
−
3
2
)
)
,
(
1
,
1
)
,
(
(
−
1
2
)
,
0
)
,
(
(
−
3
2
)
,
(
−
3
2
)
)
(iv)
(
1
,
(
−
3
2
)
)
,
(
1
,
1
)
,
(
(
−
7
2
)
,
(
−
1
)
)
,
(
(
−
3
2
)
,
(
−
3
2
)
)
(v)
(
3
,
1
2
)
,
(
1
,
1
)
,
(
(
−
3
2
)
,
1
)
,
(
(
−
3
2
)
,
(
−
3
2
)
)
Question
19
19.
Find the lengths of the medians of a triangle whose vertices are
(
1
,
(
−
6
)
)
,
(
1
,
0
)
and
(
5
,
3
)
(i)
1
2
√
241
,
5
2
,
2
√
13
(ii)
3
,
5
2
,
5
2
(iii)
5
2
,
1
2
√
97
,
3
Question
20
20.
Find the area of the quadrilateral formed by
(
(
−
5
)
,
(
−
8
)
)
,
(
1
,
(
−
5
)
)
,
(
(
−
1
)
,
(
−
2
)
)
and
(
(
−
5
)
,
(
−
2
)
)
(i)
27
(ii)
25
(iii)
23
(iv)
22
(v)
24
Question
21
21.
Three vertices of a parallelogram are
(
(
−
6
)
,
(
−
2
)
)
,
(
1
,
(
−
2
)
)
and
(
3
,
3
)
.
Find the fourth vertex
(i)
(
(
−
5
)
,
4
)
(ii)
(
(
−
3
)
,
2
)
(iii)
(
(
−
2
)
,
5
)
(iv)
(
(
−
4
)
,
3
)
(v)
(
(
−
6
)
,
1
)
Question
22
22.
Find the coordinates of the orthocentre of the triangle
whose vertices are
(
0
,
5
)
,
(
3
,
(
−
8
)
)
and
(
(
−
1
)
,
2
)
(i)
(
(
−
202
11
)
,
(
−
39
11
)
)
(ii)
(
(
−
180
11
)
,
(
−
17
11
)
)
(iii)
(
(
−
169
11
)
,
(
−
28
11
)
)
(iv)
(
(
−
158
11
)
,
5
11
)
(v)
(
(
−
191
11
)
,
(
−
6
11
)
)
Question
23
23.
Find the coordinates of the circumcentre of the triangle
whose vertices are
(
(
−
7
)
,
2
)
,
(
2
,
1
)
and
(
6
,
(
−
4
)
)
(i)
(
(
−
5
2
)
,
(
−
17
2
)
)
(ii)
(
(
−
11
2
)
,
(
−
19
2
)
)
(iii)
(
(
−
7
2
)
,
(
−
15
2
)
)
(iv)
(
(
−
3
2
)
,
(
−
11
2
)
)
(v)
(
(
−
9
2
)
,
(
−
13
2
)
)
Question
24
24.
Find the centre of the circle passing through
the points
(
(
−
8
)
,
7
)
,
(
0
,
(
−
6
)
)
and
(
(
−
2
)
,
7
)
(i)
(
(
−
5
)
,
(
−
3
26
)
)
(ii)
(
(
−
4
)
,
(
−
29
26
)
)
(iii)
(
(
−
3
)
,
49
26
)
(iv)
(
(
−
6
)
,
23
26
)
(v)
(
(
−
7
)
,
(
−
55
26
)
)
Question
25
25.
Find the circumradius of the triangle whose vertices are
(
(
−
1
)
,
4
)
,
(
3
,
6
)
and
(
(
−
8
)
,
(
−
6
)
)
(i)
39485
26
(ii)
5
26
√
7895
(iii)
5
26
4
√
7897
(iv)
5
26
√
7897
(v)
5
26
√
7900
Question
26
26.
Find the radius of the circle passing through the points
(
8
,
6
)
,
(
7
,
(
−
7
)
)
and
(
(
−
3
)
,
5
)
(i)
61
71
√
82
(ii)
61
71
√
85
(iii)
61
71
√
87
(iv)
61
71
4
√
85
(v)
5185
71
Question
27
27.
Find the point which is equidistant from the points
(
(
−
1
)
,
(
−
1
)
)
,
(
(
−
7
)
,
8
)
and
(
(
−
8
)
,
(
−
1
)
)
(i)
(
(
−
11
2
)
,
25
6
)
(ii)
(
(
−
7
2
)
,
13
6
)
(iii)
(
(
−
9
2
)
,
19
6
)
(iv)
(
(
−
5
2
)
,
31
6
)
(v)
(
(
−
13
2
)
,
7
6
)
Question
28
28.
Find the relation between x and y if the points
(
x
,
y
)
,
(
6
,
0
)
and
(
3
,
(
−
8
)
)
are collinear
(i)
(
9
x
+
9
y
+
45
)
=
0
(ii)
(
−
2
x
+
3
y
−
15
)
=
0
(iii)
(
−
8
x
+
3
y
+
48
)
=
0
(iv)
(
11
x
+
6
y
+
15
)
=
0
(v)
(
3
x
+
9
y
−
18
)
=
0
Question
29
29.
Which of the following sets of points are collinear?
(i)
(
8
,
(
−
2
)
)
,
(
(
−
3
)
,
(
−
3
)
)
,
(
0
,
(
−
3
)
)
(ii)
(
(
−
3
)
,
8
)
,
(
(
−
4
)
,
4
)
,
(
3
,
(
−
5
)
)
(iii)
(
1
,
(
−
3
)
)
,
(
(
−
1
)
,
6
)
,
(
(
−
1
3
)
,
3
)
(iv)
(
2
,
6
)
,
(
(
−
2
)
,
8
)
,
(
3
,
1
)
(v)
(
2
,
4
)
,
(
(
−
6
)
,
2
)
,
(
3
,
(
−
1
)
)
Question
30
30.
Find the relation between x and y such that the point P
(
x
,
y
)
is equidistant from points
(
7
,
7
)
and
(
(
−
1
)
,
(
−
5
)
)
(i)
(
12
y
−
86
)
=
0
(ii)
(
12
y
−
84
)
=
0
(iii)
(
3
x
+
6
y
−
18
)
=
0
(iv)
(
4
x
+
6
y
−
18
)
=
0
(v)
(
4
x
+
9
y
−
18
)
=
0
Assignment Key
1) (i)
2) (iv)
3) (iv)
4) (iii)
5) (iii)
6) (iv)
7) (iv)
8) (ii)
9) (v)
10) (i)
11) (v)
12) (iv)
13) (i)
14) (iii)
15) (iii)
16) (v)
17) (v)
18) (ii)
19) (i)
20) (v)
21) (iv)
22) (ii)
23) (iii)
24) (i)
25) (iv)
26) (ii)
27) (iii)
28) (iii)
29) (iii)
30) (iv)