EduSahara™ Assignment
Name : Similarity of Triangles
Chapter : Similarity of Triangles
Grade : ICSE Grade X
License : Non Commercial Use
Question 1
1.
Identify the property by which the two given triangles are similar
  • (i)
    SSS Similarity
  • (ii)
    AAA Similarity
  • (iii)
    not similar
  • (iv)
    SAS Similarity
Question 2
2.
Identify the property by which the two given triangles are similar
  • (i)
    AAA Similarity
  • (ii)
    SSS Similarity
  • (iii)
    SAS Similarity
  • (iv)
    not similar
Question 3
3.
Identify the property by which the two given triangles are similar
  • (i)
    AAA Similarity
  • (ii)
    SSS Similarity
  • (iii)
    SAS Similarity
  • (iv)
    not similar
Question 4
4.
    • In the given figure, △FGH and △PQR are such that
    • ∠G
    • =
    • ∠Q
    •  
    • and
    • FG

      PQ
    • =
    • GH

      QR
    • .
    • Identify the property by which the two triangles are similar
  • (i)
    not similar
  • (ii)
    AAA Similarity
  • (iii)
    SAS Similarity
  • (iv)
    SSS Similarity
Question 5
5.
    • In the given figure, △GHI and △STU are such that
    • ∠H
    • =
    • ∠T
    •  
    • and
    •  
    • ∠I
    • =
    • ∠U
    • .
    • Identify the property by which the two triangles are similar
  • (i)
    AAA Similarity
  • (ii)
    SAS Similarity
  • (iii)
    not similar
  • (iv)
    SSS Similarity
Question 6
6.
    • In the given figure, △GHI and △QRS are such that
    • GH

      QR
    • =
    • HI

      RS
    • =
    • IG

      SQ
    • .
    • Identify the property by which the two triangles are similar
  • (i)
    AAA Similarity
  • (ii)
    SAS Similarity
  • (iii)
    not similar
  • (iv)
    SSS Similarity
Question 7
7.
    • In the given figure,
    •  
    • EF
    • CD
    • .
    • If
    •  
    • BE

      EC
    • =
    • 3

      2
    • and
    • BD
    • =
    • 14.9 cm
    • , find
    • BF
  • (i)
    10.94 cm
  • (ii)
    8.94 cm
  • (iii)
    6.94 cm
  • (iv)
    7.94 cm
  • (v)
    9.94 cm
Question 8
8.
    • In the given figure,
    •  
    • EF
    • CD
    • .
    • If
    •  
    • BE
    • =
    • 5.2 cm
    • ,
    • BC
    • =
    • 15.6 cm
    • and
    • BD
    • =
    • 13.6 cm
    • , find
    • BF
  • (i)
    4.53 cm
  • (ii)
    3.53 cm
  • (iii)
    5.53 cm
  • (iv)
    2.53 cm
  • (v)
    6.53 cm
Question 9
9.
In the given figure, TU ∥ HI and GT = 12 cm, GH = 20 cm and TU = 15 cm, find HI
  • (i)
    23.0 cm
  • (ii)
    27.0 cm
  • (iii)
    26.0 cm
  • (iv)
    24.0 cm
  • (v)
    25.0 cm
Question 10
10.
In the given figure, △LMN is isosceles right-angled at M and MO ⟂ NL. ∠N =
  • (i)
    ∠L
  • (ii)
    ∠O
  • (iii)
    ∠Q
  • (iv)
    ∠M
  • (v)
    ∠P
Question 11
11.
In the given figure, △ABC is isosceles right-angled at B and BD ⟂ CA. ∠BDA =
  • (i)
    ∠DAB
  • (ii)
    ∠ABD
  • (iii)
    ∠ABC
  • (iv)
    ∠BCD
  • (v)
    ∠DBC
Question 12
12.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • △FEH ∼
  • (i)
    △ACF
  • (ii)
    △DAE
  • (iii)
    △FDA
  • (iv)
    △ABH
  • (v)
    △DCF
Question 13
13.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠FAC  =
  • (i)
    ∠AFD
  • (ii)
    ∠HAB
  • (iii)
    ∠HFE
  • (iv)
    ∠FDA
  • (v)
    ∠FEH
Question 14
14.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠FDA  =
  • (i)
    ∠EHF
  • (ii)
    ∠ABH
  • (iii)
    ∠ACF
  • (iv)
    ∠FEH
  • (v)
    ∠DAF
Question 15
15.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠BHA  =
  • (i)
    ∠DAF
  • (ii)
    ∠EHF
  • (iii)
    ∠AFD
  • (iv)
    ∠HFE
  • (v)
    ∠CFA
Question 16
16.
    • In the given figure, HIJK is a trapezium in which
    • HI ∥ JK
    • and the diagonals
    • IK
    • and
    • HJ
    • intersect at
    • L
    • .
    • If
    •  
    • LH
    • =
    • (
      2
      x
      +
      28
      )
    • cm,
    • IL
    • =
    • (
      3
      x
      +
      6
      )
    • cm,
    • LJ
    • =
    • (
      2
      x
      +
      12
      )
    • cm and
    • KL
    • =
    • (
      2
      x
      +
      22
      )
    • cm, find the value of x
  • (i)
    (
    -6
    ,
    36
    )
  • (ii)
    (
    34
    ,
    -8
    )
  • (iii)
    (
    37
    ,
    -8
    )
  • (iv)
    (
    35
    ,
    -7
    )
  • (v)
    (
    34
    ,
    -9
    )
Question 17
17.
    • In the given figure, DEFG is a trapezium in which
    • DE ∥ FG
    • and the diagonals
    • EG
    • and
    • DF
    • intersect at
    • H
    • .
    • △HDE
    •  
  • (i)
    △HGD
  • (ii)
    △HEF
  • (iii)
    △GDE
  • (iv)
    △HFG
  • (v)
    △EFG
Question 18
18.
In the given figure, the altitudes TH and IU of △GHI meet at S. △TIH ∼
  • (i)
    △UHS
  • (ii)
    △UHI
  • (iii)
    △TIS
  • (iv)
    △SHI
  • (v)
    △SUT
Question 19
19.
In the given figure, the altitudes NH and IO of △GHI meet at M. ∠NMI  =
  • (i)
    ∠MOH
  • (ii)
    ∠MIN
  • (iii)
    ∠OHM
  • (iv)
    ∠HMO
  • (v)
    ∠INM
Question 20
20.
    • In the given figure, PQ ∥ GH , and median FI bisects PQ.
    • If  FG = 17 cm, FI = 16.9 cm and FP = 7.73 cm,  PG =
  • (i)
    10.27 cm
  • (ii)
    8.27 cm
  • (iii)
    11.27 cm
  • (iv)
    7.27 cm
  • (v)
    9.27 cm
Question 21
21.
    • In the given figure, PQ ∥ IJ , and median HK bisects PQ.
    • If  HK = 16.5 cm, HJ = 20 cm and HL = 9.43 cm,  HQ =
  • (i)
    9.43 cm
  • (ii)
    13.43 cm
  • (iii)
    12.43 cm
  • (iv)
    10.43 cm
  • (v)
    11.43 cm
Question 22
22.
    • In the given figure, TU ∥ HI , and median GJ bisects TU.
    •  
    • △GTK ∼
  • (i)
    △GKU
  • (ii)
    △GJI
  • (iii)
    △GHJ
  • (iv)
    △GHI
  • (v)
    △HIG
Question 23
23.
In the given figure, △FGH is a triangle in which FI is the internal bisector of ∠F and HJ ∥ IF meeting GF produced at J . ∠HJF =
  • (i)
    ∠IHF
  • (ii)
    ∠IFG
  • (iii)
    ∠JFH
  • (iv)
    ∠GIF
  • (v)
    ∠FIH
Question 24
24.
In the given figure, F and G are points on the sides CD and CE respectively of △CDE.For which of the following cases, FG ∥ DE
a)
CD = 20 cm, FD = 8.57 cm, CG = 13.43 cm and CE = 20 cm
b)
CD = 20 cm, FD = 8.57 cm, CE = 20 cm and CG = 11.43 cm
c)
CF = 11.43 cm, FD = 8.57 cm, CG = 11.43 cm and GE = 8.57 cm
d)
CD = 20 cm, CF = 13.43 cm, CE = 20 cm and GE = 8.57 cm
  • (i)
    {d,c}
  • (ii)
    {a,b}
  • (iii)
    {a,c,b}
  • (iv)
    {a,d,b}
  • (v)
    {b,c}
Question 25
25.
In the given figure, the area of the △GHI is x sq.cm. J,K,L are the mid-points of the sides HI , IG and GH respectively. The area of the △JKL is
  • (i)
      • 1

        3
      • of area of △GHI
  • (ii)
      • 2

        3
      • of area of △GHI
  • (iii)
      • 1

        4
      • of area of △GHI
  • (iv)
      • 3

        4
      • of area of △GHI
  • (v)
      • 1

        2
      • of area of △GHI
Question 26
26.
    • In the given figure, the parallelogram EFGH and the triangle △IEF are on the same bases and between the same parallels.
    • The area of the
    • △IEF
    • is x sq.cm. The area of the parallelogram is
  • (i)
      • thrice
      • the area of the triangle
  • (ii)
      • 4

        3
      • the area of the triangle
  • (iii)
      • 5

        4
      • the area of the triangle
  • (iv)
      • twice
      • the area of the triangle
  • (v)
      • 3

        2
      • the area of the triangle
Question 27
27.
If the ratio of the bases of two triangles is H : I and the ratio of the corresponding heights is J : K , the ratio of their areas in the same order is
  • (i)
    HI : JK
  • (ii)
    JK : HI
  • (iii)
    HJ : IK
  • (iv)
    IJ : HK
  • (v)
    HK : IJ
Question 28
28.
In the given △ABC, DE ∥ BC. If  AD : DB = 11.43 cm : 8.57 cm  and  AC = 16 cm, AE =
  • (i)
    11.14 cm
  • (ii)
    10.14 cm
  • (iii)
    8.14 cm
  • (iv)
    7.14 cm
  • (v)
    9.14 cm
Question 29
29.
In the given two similar triangles, if m = 20 cm, n = 19 cm, o = 20 cm, r = 12 cm, find p
  • (i)
    13.00 cm
  • (ii)
    10.00 cm
  • (iii)
    14.00 cm
  • (iv)
    12.00 cm
  • (v)
    11.00 cm
Question 30
30.
In the given figure, given ∠GDE = ∠FDG, x : y = 8.18 cm : 9.82 cm and q = 18 cm, find p =
  • (i)
    16.00 cm
  • (ii)
    15.00 cm
  • (iii)
    17.00 cm
  • (iv)
    13.00 cm
  • (v)
    14.00 cm
Question 31
31.
In the given figure, given ∠JGH = ∠IGJ, p = 7.76 cm, q = 8.24 cm and HI = 16 cm, find JI =
  • (i)
    8.24 cm
  • (ii)
    6.24 cm
  • (iii)
    7.24 cm
  • (iv)
    10.24 cm
  • (v)
    9.24 cm
Question 32
32.
In the given figure, BCDE is a trapezium where OB = 14 cm , OC = 14 cm and OD = 5 cm . Find OE =
  • (i)
    7 cm
  • (ii)
    3 cm
  • (iii)
    4 cm
  • (iv)
    6 cm
  • (v)
    5 cm
Question 33
33.
In the given figure, ∠EFH = 47.23°, find the value of x =
  • (i)
    41.77°
  • (ii)
    44.77°
  • (iii)
    42.77°
  • (iv)
    43.77°
  • (v)
    40.77°
Question 34
34.
In the given figure, ∠DEF = 48.46°, find the value of y =
  • (i)
    39.54°
  • (ii)
    41.54°
  • (iii)
    42.54°
  • (iv)
    43.54°
  • (v)
    40.54°
Question 35
35.
In the given figure, if CD ∥ EF then
  • (i)
    △GDC ∼ △GFE
  • (ii)
    △CDG ∼ △GEF
  • (iii)
    △CDG ∼ △GFE
  • (iv)
    △GCD ∼ △GEF
  • (v)
    △CDG ∼ △FEG
Question 36
36.
In the given figure, △EFG is right-angled at F. Also, FH ⟂ EG. Which of the following are true?
a)
    • FH
      2
    • =
    • EH
    • .
    • HG
b)
    • EF
      2
    • =
    • GE
    • .
    • GH
c)
    • EF
      2
    • =
    • EG
    • .
    • EH
d)
    • FG
      2
    • =
    • GE
    • .
    • GH
e)
    • FG
      2
    • =
    • EG
    • .
    • EH
  • (i)
    {b,a}
  • (ii)
    {b,a,c}
  • (iii)
    {a,c,d}
  • (iv)
    {e,c}
  • (v)
    {b,e,d}
Question 37
37.
In the given figure, △IJK is right-angled at J. Also, JL ⟂ IK. If  IJ = 17 cm, JL = 12.95 cm, then find JK.
  • (i)
    20.00 cm
  • (ii)
    19.00 cm
  • (iii)
    21.00 cm
  • (iv)
    18.00 cm
  • (v)
    22.00 cm
Question 38
38.
In the given figure, △ABC is right-angled at B. Also, BD ⟂ AC. If  AD = 12.1 cm, BD = 13.38 cm, then find DC.
  • (i)
    16.80 cm
  • (ii)
    14.80 cm
  • (iii)
    13.80 cm
  • (iv)
    12.80 cm
  • (v)
    15.80 cm
Question 39
39.
    • In the given figure, △ABC ∼ △NOP and AB = 12 cm, NO = 16.8 cm.
    • If the area of the
    • △NOP
    • =
    • 94.08 sq.cm
    • , find the area of the
    • △ABC
  • (i)
    47.00 sq.cm
  • (ii)
    48.00 sq.cm
  • (iii)
    46.00 sq.cm
  • (iv)
    50.00 sq.cm
  • (v)
    49.00 sq.cm
Question 40
40.
    • In the given figure, △ABC ∼ △NOP and BC = 15 cm , OP = 21 cm and
    • AD
    • =
    • 11.2 cm
    • ,
    • find the area of the
    • △NOP
  • (i)
    162.64 sq.cm
  • (ii)
    164.64 sq.cm
  • (iii)
    163.64 sq.cm
  • (iv)
    166.64 sq.cm
  • (v)
    165.64 sq.cm
Question 41
41.
In the given figure, △DEF & △OPQ are similar triangles. If the ratio of the heights DG : OR = 10 : 13, then the ratio of their areas is
  • (i)
    101
    sq.cm
    :
    169
    sq.cm
  • (ii)
    100
    sq.cm
    :
    172
    sq.cm
  • (iii)
    100
    sq.cm
    :
    169
    sq.cm
  • (iv)
    100
    sq.cm
    :
    166
    sq.cm
  • (v)
    99
    sq.cm
    :
    169
    sq.cm
Question 42
42.
In the given figure, points L , M and N are the mid-points of sides JK, KI and IJ of △IJK. Which of the following are true?
a)
    • Area of
    • △IJK
    • =
    • 1

      3
    • area of
    • △LMN
b)
All four small triangles have equal areas
c)
Area of △IJK = 4 times area of △LMN
d)
    • Area of trapezium
    • JKMN
    • is
    • 1

      4
    • the area of
    • △IJK
e)
Area of trapezium JKMN is thrice the area of △INM
  • (i)
    {b,c,e}
  • (ii)
    {a,b,c}
  • (iii)
    {d,c}
  • (iv)
    {a,b}
  • (v)
    {a,d,e}
Question 43
43.
In the given figure, points J , K and L are the mid-points of sides HI, IG and GH of △GHI. Which of the following are true?
a)
△KJI ∼ △GHI
b)
△LHJ ∼ △GHI
c)
△GLK ∼ △GHI
d)
△JLK ∼ △GHI
e)
△JKL ∼ △GHI
  • (i)
    {d,e,a}
  • (ii)
    {d,a}
  • (iii)
    {a,b,c,e}
  • (iv)
    {d,c}
  • (v)
    {d,b}
Question 44
44.
The perimeters of two similar triangles are 26 cm and 22 cm respectively. If one side of the first triangle is 13 cm, find the length of the corresponding side of the second triangle.
  • (i)
    10.00 cm
  • (ii)
    11.00 cm
  • (iii)
    9.00 cm
  • (iv)
    13.00 cm
  • (v)
    12.00 cm
Question 45
45.
In the given figure, L is a point on side JK of △IJK such that ∠KIJ = ∠ILK = 102° , ∠LKI = 29°. Find ∠KIL
  • (i)
    47°
  • (ii)
    48°
  • (iii)
    51°
  • (iv)
    50°
  • (v)
    49°
Question 46
46.
ABCD is a square and △ABE is an equilateral triangle. Also, △ACF is an equilateral triangle. If area of △ABE is 'a' sq.units, then the area of △ACF is
  • (i)
      • 1

        2



        3
      • a sq.units
  • (ii)
      • 1

        2
      • a sq.units
  • (iii)
      • 2a sq.units
  • (iv)



      • 3
      • a sq.units
  • (v)
      • a
        2
      • sq.units
Question 47
47.
DEFG is a cyclic trapezium. Diagonals EG and DF intersect at H. If GD = 17 cm, find EF
  • (i)
    18 cm
  • (ii)
    17 cm
  • (iii)
    16 cm
  • (iv)
    19 cm
  • (v)
    15 cm
Question 48
48.
    • A vertical stick
    • 11 m
    • long casts a shadow of
    • 16 m
    • long on the ground.
    • At the same time, a tower casts the shadow
    • 128 m
    • long on the ground.
    • Find the height of the tower.
  • (i)
    86 m
  • (ii)
    88 m
  • (iii)
    87 m
  • (iv)
    90 m
  • (v)
    89 m
Question 49
49.
    • In the given figure, △GHI, TU ∥ HI such that
    • area of
    •  
    • △GTU
    • = area of
    •  
    • TUIH
    • . Find
    •  
    • GT

      GH
  • (i)
    1

    2



    1

    2
  • (ii)
    1

    2



    2
  • (iii)
    1
  • (iv)
    1

    2



    5
  • (v)
    1

    2
    4


    2
Question 50
50.
In the given figure, ∠JGH = ∠IGJ and GJ ∥ KI and GH = 15 cm, HJ = 7 cm and JI = 9 cm. Find GK
  • (i)
    17.29 cm
  • (ii)
    20.29 cm
  • (iii)
    21.29 cm
  • (iv)
    18.29 cm
  • (v)
    19.29 cm
Question 51
51.
    • In the given figure, HJ is the angular bisector of
    • ∠H
    • &
    • ∠J
    • GH
    • =
    • 20 cm
    • ,
    • HI
    • =
    • 20 cm
    • and
    • IJ
    • =
    • 19 cm
    • .
    • Find
    • JG
  • (i)
    18.00 cm
  • (ii)
    19.00 cm
  • (iii)
    20.00 cm
  • (iv)
    21.00 cm
  • (v)
    17.00 cm
Question 52
52.
In the given figure, DEF is a triangle and 'O' is a point inside △DEF. The angular bisector of ∠EOD, ∠FOE & ∠DOF meet DE, EF & FD at G, H & I respectively . Then
  • (i)
    DG . EH . FI = GH . HI . IG
  • (ii)
    DG . EH . FI = OG . OH . OI
  • (iii)
    DG . EH . FI = DE . EF . FD
  • (iv)
    DG . EH . FI = GE . HF . ID
  • (v)
    DG . EH . FI = OD . OE . OF
Question 53
53.
In the given figure, if A, Q, R, S, T, U are equidistant and RP ∥ UB and AB = 22 cm and AP = 9 cm. Find PB
  • (i)
    15.00 cm
  • (ii)
    14.00 cm
  • (iii)
    11.00 cm
  • (iv)
    13.00 cm
  • (v)
    12.00 cm
Question 54
54.
From the given figure and values, find x
  • (i)
    (
    21
    ,
    -3
    )
  • (ii)
    (
    20
    ,
    -5
    )
  • (iii)
    (
    23
    ,
    -4
    )
  • (iv)
    (
    20
    ,
    -4
    )
  • (v)
    (
    -2
    ,
    22
    )
Question 55
55.
If the measures are as shown in the given figure, find  BC
  • (i)
    22.0 cm
  • (ii)
    19.0 cm
  • (iii)
    18.0 cm
  • (iv)
    20.0 cm
  • (v)
    21.0 cm
Question 56
56.
    • In the given figure, the two circles touch each other internally.
    • Diameter
    • OB
    • passes through the centre of the smaller circle.
    • OX = 10 cm
    • ,
    • OY = 22 cm
    • and radius of the inner circle is
    • 6 cm
    • .
    • Find the radius of the outer circle.
  • (i)
    11.20 cm
  • (ii)
    14.20 cm
  • (iii)
    15.20 cm
  • (iv)
    13.20 cm
  • (v)
    12.20 cm
    Assignment Key

  •  1) (iv)
  •  2) (i)
  •  3) (ii)
  •  4) (iii)
  •  5) (i)
  •  6) (iv)
  •  7) (ii)
  •  8) (i)
  •  9) (v)
  •  10) (i)
  •  11) (iii)
  •  12) (iii)
  •  13) (ii)
  •  14) (iv)
  •  15) (v)
  •  16) (ii)
  •  17) (iv)
  •  18) (ii)
  •  19) (iv)
  •  20) (v)
  •  21) (v)
  •  22) (iii)
  •  23) (ii)
  •  24) (v)
  •  25) (iii)
  •  26) (iv)
  •  27) (iii)
  •  28) (v)
  •  29) (iv)
  •  30) (ii)
  •  31) (i)
  •  32) (v)
  •  33) (iii)
  •  34) (ii)
  •  35) (v)
  •  36) (iii)
  •  37) (i)
  •  38) (ii)
  •  39) (ii)
  •  40) (ii)
  •  41) (iii)
  •  42) (i)
  •  43) (iii)
  •  44) (ii)
  •  45) (v)
  •  46) (iii)
  •  47) (ii)
  •  48) (ii)
  •  49) (ii)
  •  50) (v)
  •  51) (ii)
  •  52) (iv)
  •  53) (iv)
  •  54) (iv)
  •  55) (iv)
  •  56) (iv)