EduSahara™ Assignment
Name : Similarity of Triangles
Chapter : Similarity of Triangles
Grade : ICSE Grade X
License : Non Commercial Use
Question 1
1.
Identify the property by which the two given triangles are similar
  • (i)
    not similar
  • (ii)
    AAA Similarity
  • (iii)
    SAS Similarity
  • (iv)
    SSS Similarity
Question 2
2.
Identify the property by which the two given triangles are similar
  • (i)
    AAA Similarity
  • (ii)
    not similar
  • (iii)
    SAS Similarity
  • (iv)
    SSS Similarity
Question 3
3.
Identify the property by which the two given triangles are similar
  • (i)
    SAS Similarity
  • (ii)
    not similar
  • (iii)
    SSS Similarity
  • (iv)
    AAA Similarity
Question 4
4.
    • In the given figure, △FGH and △TUV are such that
    • ∠G
    • =
    • ∠U
    •  
    • and
    • FG

      TU
    • =
    • GH

      UV
    • .
    • Identify the property by which the two triangles are similar
  • (i)
    not similar
  • (ii)
    SAS Similarity
  • (iii)
    AAA Similarity
  • (iv)
    SSS Similarity
Question 5
5.
    • In the given figure, △DEF and △QRS are such that
    • ∠E
    • =
    • ∠R
    •  
    • and
    •  
    • ∠F
    • =
    • ∠S
    • .
    • Identify the property by which the two triangles are similar
  • (i)
    SSS Similarity
  • (ii)
    not similar
  • (iii)
    AAA Similarity
  • (iv)
    SAS Similarity
Question 6
6.
    • In the given figure, △FGH and △STU are such that
    • FG

      ST
    • =
    • GH

      TU
    • =
    • HF

      US
    • .
    • Identify the property by which the two triangles are similar
  • (i)
    AAA Similarity
  • (ii)
    not similar
  • (iii)
    SAS Similarity
  • (iv)
    SSS Similarity
Question 7
7.
    • In the given figure,
    •  
    • GH
    • EF
    • .
    • If
    •  
    • DG

      GE
    • =
    • 1

      2
    • and
    • DF
    • =
    • 11.2 cm
    • , find
    • DH
  • (i)
    3.73 cm
  • (ii)
    5.73 cm
  • (iii)
    2.73 cm
  • (iv)
    1.73 cm
  • (v)
    4.73 cm
Question 8
8.
    • In the given figure,
    •  
    • PQ
    • NO
    • .
    • If
    •  
    • MP
    • =
    • 8.21 cm
    • ,
    • MN
    • =
    • 11.5 cm
    • and
    • MO
    • =
    • 13.3 cm
    • , find
    • MQ
  • (i)
    11.50 cm
  • (ii)
    10.50 cm
  • (iii)
    8.50 cm
  • (iv)
    9.50 cm
  • (v)
    7.50 cm
Question 9
9.
In the given figure, PQ ∥ DE and CD = 21 cm, PQ = 14.4 cm and DE = 24 cm, find CP
  • (i)
    14.6 cm
  • (ii)
    10.6 cm
  • (iii)
    13.6 cm
  • (iv)
    12.6 cm
  • (v)
    11.6 cm
Question 10
10.
In the given figure, △FGH is isosceles right-angled at G and GI ⟂ HF. ∠H =
  • (i)
    ∠I
  • (ii)
    ∠J
  • (iii)
    ∠K
  • (iv)
    ∠G
  • (v)
    ∠F
Question 11
11.
In the given figure, △NOP is isosceles right-angled at O and OQ ⟂ PN. ∠PQO =
  • (i)
    ∠NOQ
  • (ii)
    ∠QNO
  • (iii)
    ∠OPQ
  • (iv)
    ∠QOP
  • (v)
    ∠OQN
Question 12
12.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • △FEH ∼
  • (i)
    △DAE
  • (ii)
    △ABH
  • (iii)
    △DCF
  • (iv)
    △FDA
  • (v)
    △ACF
Question 13
13.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠HFE  =
  • (i)
    ∠FAC
  • (ii)
    ∠FEH
  • (iii)
    ∠HAB
  • (iv)
    ∠AFD
  • (v)
    ∠FDA
Question 14
14.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠FDA  =
  • (i)
    ∠ABH
  • (ii)
    ∠DAF
  • (iii)
    ∠FEH
  • (iv)
    ∠ACF
  • (v)
    ∠EHF
Question 15
15.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠DAF  =
  • (i)
    ∠BHA
  • (ii)
    ∠HFE
  • (iii)
    ∠CFA
  • (iv)
    ∠EHF
  • (v)
    ∠AFD
Question 16
16.
    • In the given figure, GHIJ is a trapezium in which
    • GH ∥ IJ
    • and the diagonals
    • HJ
    • and
    • GI
    • intersect at
    • K
    • .
    • If
    •  
    • KG
    • =
    • (
      4
      x
      +
      19
      )
    • cm,
    • HK
    • =
    • (
      3
      x
      +
      21
      )
    • cm,
    • KI
    • =
    • (
      2
      x
      +
      19
      )
    • cm and
    • JK
    • =
    • (
      x
      +
      37
      )
    • cm, find the value of x
  • (i)
    (
    40
    ,
    -2
    )
  • (ii)
    (
    -1
    ,
    38
    )
  • (iii)
    (
    -4
    ,
    37
    )
  • (iv)
    (
    -3
    ,
    39
    )
  • (v)
    (
    -4
    ,
    38
    )
Question 17
17.
    • In the given figure, DEFG is a trapezium in which
    • DE ∥ FG
    • and the diagonals
    • EG
    • and
    • DF
    • intersect at
    • H
    • .
    • △HDE
    •  
  • (i)
    △HFG
  • (ii)
    △HEF
  • (iii)
    △HGD
  • (iv)
    △GDE
  • (v)
    △EFG
Question 18
18.
In the given figure, the altitudes OE and FP of △DEF meet at N. △PEN ∼
  • (i)
    △PEF
  • (ii)
    △NPO
  • (iii)
    △OFN
  • (iv)
    △OFE
  • (v)
    △NEF
Question 19
19.
In the given figure, the altitudes UG and HV of △FGH meet at T. ∠GTV  =
  • (i)
    ∠UTH
  • (ii)
    ∠TVG
  • (iii)
    ∠HUT
  • (iv)
    ∠VGT
  • (v)
    ∠THU
Question 20
20.
    • In the given figure, PQ ∥ FG , and median EH bisects PQ.
    • If  EF = 15 cm, EH = 15 cm and EP = 10 cm,  IH =
  • (i)
    4.00 cm
  • (ii)
    7.00 cm
  • (iii)
    6.00 cm
  • (iv)
    3.00 cm
  • (v)
    5.00 cm
Question 21
21.
    • In the given figure, RS ∥ CD , and median BE bisects RS.
    • If  BE = 14.8 cm, BD = 20 cm and BS = 11.11 cm,  BF =
  • (i)
    6.22 cm
  • (ii)
    10.22 cm
  • (iii)
    7.22 cm
  • (iv)
    9.22 cm
  • (v)
    8.22 cm
Question 22
22.
    • In the given figure, PQ ∥ IJ , and median HK bisects PQ.
    •  
    • △HIK ∼
  • (i)
    △HPL
  • (ii)
    △HLQ
  • (iii)
    △HIJ
  • (iv)
    △IJH
  • (v)
    △HKJ
Question 23
23.
In the given figure, △NOP is a triangle in which NQ is the internal bisector of ∠N and PR ∥ QN meeting ON produced at R . ∠NPR =
  • (i)
    ∠OQN
  • (ii)
    ∠PRN
  • (iii)
    ∠QPN
  • (iv)
    ∠RNP
  • (v)
    ∠NQP
Question 24
24.
In the given figure, H and I are points on the sides EF and EG respectively of △EFG.For which of the following cases, HI ∥ FG
a)
EF = 20 cm, HF = 10 cm, EG = 18 cm and EI = 9 cm
b)
EH = 10 cm, HF = 10 cm, EI = 9 cm and IG = 9 cm
c)
EF = 20 cm, HF = 10 cm, EI = 11 cm and EG = 18 cm
d)
EF = 20 cm, EH = 12 cm, EG = 18 cm and IG = 9 cm
  • (i)
    {c,a}
  • (ii)
    {c,d,a}
  • (iii)
    {c,b,a}
  • (iv)
    {d,b}
  • (v)
    {a,b}
Question 25
25.
In the given figure, the area of the △BCD is x sq.cm. E,F,G are the mid-points of the sides CD , DB and BC respectively. The area of the △EFG is
  • (i)
      • 1

        4
      • of area of △BCD
  • (ii)
      • 2

        3
      • of area of △BCD
  • (iii)
      • 1

        2
      • of area of △BCD
  • (iv)
      • 3

        4
      • of area of △BCD
  • (v)
      • 1

        3
      • of area of △BCD
Question 26
26.
    • In the given figure, the parallelogram EFGH and the triangle △IEF are on the same bases and between the same parallels.
    • The area of the
    • △IEF
    • is x sq.cm. The area of the parallelogram is
  • (i)
      • 4

        3
      • the area of the triangle
  • (ii)
      • 3

        2
      • the area of the triangle
  • (iii)
      • twice
      • the area of the triangle
  • (iv)
      • 5

        4
      • the area of the triangle
  • (v)
      • thrice
      • the area of the triangle
Question 27
27.
If the ratio of the bases of two triangles is M : N and the ratio of the corresponding heights is O : P , the ratio of their areas in the same order is
  • (i)
    MO : NP
  • (ii)
    NO : MP
  • (iii)
    MN : OP
  • (iv)
    MP : NO
  • (v)
    OP : MN
Question 28
28.
In the given △DEF, GH ∥ EF. If  DG : GE = 5.33 cm : 10.67 cm  and  DF = 15 cm, DH =
  • (i)
    4.00 cm
  • (ii)
    6.00 cm
  • (iii)
    5.00 cm
  • (iv)
    3.00 cm
  • (v)
    7.00 cm
Question 29
29.
In the given two similar triangles, if n = 18 cm, o = 19 cm, p = 19 cm, s = 11.4 cm, find q
  • (i)
    8.80 cm
  • (ii)
    10.80 cm
  • (iii)
    12.80 cm
  • (iv)
    9.80 cm
  • (v)
    11.80 cm
Question 30
30.
In the given figure, given ∠KHI = ∠JHK, x : y = 9.71 cm : 7.29 cm and p = 20 cm, find q =
  • (i)
    17.00 cm
  • (ii)
    15.00 cm
  • (iii)
    16.00 cm
  • (iv)
    14.00 cm
  • (v)
    13.00 cm
Question 31
31.
In the given figure, given ∠GDE = ∠FDG, p = 10.31 cm, q = 8.69 cm and EF = 19 cm, find EG =
  • (i)
    9.31 cm
  • (ii)
    12.31 cm
  • (iii)
    11.31 cm
  • (iv)
    10.31 cm
  • (v)
    8.31 cm
Question 32
32.
In the given figure, FGHI is a trapezium where OF = 12 cm , OH = 4 cm and OI = 4 cm . Find OG =
  • (i)
    11 cm
  • (ii)
    14 cm
  • (iii)
    10 cm
  • (iv)
    13 cm
  • (v)
    12 cm
Question 33
33.
In the given figure, ∠LIJ = 41.98°, find the value of x =
  • (i)
    49.02°
  • (ii)
    48.02°
  • (iii)
    46.02°
  • (iv)
    47.02°
  • (v)
    50.02°
Question 34
34.
In the given figure, ∠JKL = 36.87°, find the value of y =
  • (i)
    53.13°
  • (ii)
    51.13°
  • (iii)
    52.13°
  • (iv)
    55.13°
  • (v)
    54.13°
Question 35
35.
In the given figure, if AB ∥ CD then
  • (i)
    △ABE ∼ △DCE
  • (ii)
    △EBA ∼ △EDC
  • (iii)
    △EAB ∼ △ECD
  • (iv)
    △ABE ∼ △ECD
  • (v)
    △ABE ∼ △EDC
Question 36
36.
In the given figure, △CDE is right-angled at D. Also, DF ⟂ CE. Which of the following are true?
a)
    • DE
      2
    • =
    • CE
    • .
    • CF
b)
    • DE
      2
    • =
    • EC
    • .
    • EF
c)
    • CD
      2
    • =
    • EC
    • .
    • EF
d)
    • CD
      2
    • =
    • CE
    • .
    • CF
e)
    • DF
      2
    • =
    • CF
    • .
    • FE
  • (i)
    {c,d}
  • (ii)
    {b,d,e}
  • (iii)
    {a,b}
  • (iv)
    {a,b,d}
  • (v)
    {a,c,e}
Question 37
37.
In the given figure, △FGH is right-angled at G. Also, GI ⟂ FH. If  GH = 18 cm, GI = 13.07 cm, then find FG.
  • (i)
    18.00 cm
  • (ii)
    21.00 cm
  • (iii)
    20.00 cm
  • (iv)
    19.00 cm
  • (v)
    17.00 cm
Question 38
38.
In the given figure, △IJK is right-angled at J. Also, JL ⟂ IK. If  LK = 14.6 cm, JL = 13.78 cm, then find IL.
  • (i)
    13.00 cm
  • (ii)
    12.00 cm
  • (iii)
    14.00 cm
  • (iv)
    15.00 cm
  • (v)
    11.00 cm
Question 39
39.
    • In the given figure, △ABC ∼ △MNO and AB = 11 cm, MN = 15.4 cm.
    • If the area of the
    • △MNO
    • =
    • 124.86 sq.cm
    • , find the area of the
    • △ABC
  • (i)
    65.71 sq.cm
  • (ii)
    61.71 sq.cm
  • (iii)
    62.71 sq.cm
  • (iv)
    63.71 sq.cm
  • (v)
    64.71 sq.cm
Question 40
40.
    • In the given figure, △ABC ∼ △NOP and BC = 13 cm , OP = 18.2 cm and
    • AD
    • =
    • 8.22 cm
    • ,
    • find the area of the
    • △NOP
  • (i)
    105.75 sq.cm
  • (ii)
    106.75 sq.cm
  • (iii)
    104.75 sq.cm
  • (iv)
    102.75 sq.cm
  • (v)
    103.75 sq.cm
Question 41
41.
In the given figure, △ABC & △NOP are similar triangles. If the ratio of the heights AD : NQ = 11 : 15, then the ratio of their areas is
  • (i)
    120
    sq.cm
    :
    225
    sq.cm
  • (ii)
    121
    sq.cm
    :
    227
    sq.cm
  • (iii)
    121
    sq.cm
    :
    225
    sq.cm
  • (iv)
    121
    sq.cm
    :
    223
    sq.cm
  • (v)
    122
    sq.cm
    :
    225
    sq.cm
Question 42
42.
In the given figure, points L , M and N are the mid-points of sides JK, KI and IJ of △IJK. Which of the following are true?
a)
Area of trapezium JKMN is thrice the area of △INM
b)
Area of △IJK = 4 times area of △LMN
c)
    • Area of
    • △IJK
    • =
    • 1

      3
    • area of
    • △LMN
d)
    • Area of trapezium
    • JKMN
    • is
    • 1

      4
    • the area of
    • △IJK
e)
All four small triangles have equal areas
  • (i)
    {a,b,e}
  • (ii)
    {c,d,e}
  • (iii)
    {d,b}
  • (iv)
    {c,a,b}
  • (v)
    {c,a}
Question 43
43.
In the given figure, points J , K and L are the mid-points of sides HI, IG and GH of △GHI. Which of the following are true?
a)
△LHJ ∼ △GHI
b)
△JKL ∼ △GHI
c)
△JLK ∼ △GHI
d)
△GLK ∼ △GHI
e)
△KJI ∼ △GHI
  • (i)
    {c,e,a}
  • (ii)
    {c,d}
  • (iii)
    {c,b}
  • (iv)
    {c,a}
  • (v)
    {a,b,d,e}
Question 44
44.
The perimeters of two similar triangles are 34 cm and 25 cm respectively. If one side of the first triangle is 9 cm, find the length of the corresponding side of the second triangle.
  • (i)
    7.62 cm
  • (ii)
    8.62 cm
  • (iii)
    4.62 cm
  • (iv)
    6.62 cm
  • (v)
    5.62 cm
Question 45
45.
In the given figure, K is a point on side IJ of △HIJ such that ∠JHI = ∠HKJ = 101° , ∠KJH = 20°. Find ∠JHK
  • (i)
    61°
  • (ii)
    57°
  • (iii)
    60°
  • (iv)
    58°
  • (v)
    59°
Question 46
46.
IJKL is a square and △IJM is an equilateral triangle. Also, △IKN is an equilateral triangle. If area of △IJM is 'a' sq.units, then the area of △IKN is
  • (i)
      • 1

        2



        3
      • a sq.units
  • (ii)
      • 1

        2
      • a sq.units
  • (iii)
      • a
        2
      • sq.units
  • (iv)
      • 2a sq.units
  • (v)



      • 3
      • a sq.units
Question 47
47.
GHIJ is a cyclic trapezium. Diagonals HJ and GI intersect at K. If JG = 15 cm, find HI
  • (i)
    14 cm
  • (ii)
    15 cm
  • (iii)
    16 cm
  • (iv)
    13 cm
  • (v)
    17 cm
Question 48
48.
    • A vertical stick
    • 14 m
    • long casts a shadow of
    • 11 m
    • long on the ground.
    • At the same time, a tower casts the shadow
    • 88 m
    • long on the ground.
    • Find the height of the tower.
  • (i)
    112 m
  • (ii)
    113 m
  • (iii)
    114 m
  • (iv)
    111 m
  • (v)
    110 m
Question 49
49.
    • In the given figure, △DEF, RS ∥ EF such that
    • area of
    •  
    • △DRS
    • = area of
    •  
    • RSFE
    • . Find
    •  
    • DR

      DE
  • (i)
    1

    2



    2
  • (ii)
    1

    2



    1

    2
  • (iii)
    1

    2



    5
  • (iv)
    1
  • (v)
    1

    2
    4


    2
Question 50
50.
In the given figure, ∠LIJ = ∠KIL and IL ∥ MK and IJ = 16 cm, JL = 9 cm and LK = 9 cm. Find IM
  • (i)
    17.00 cm
  • (ii)
    14.00 cm
  • (iii)
    15.00 cm
  • (iv)
    18.00 cm
  • (v)
    16.00 cm
Question 51
51.
    • In the given figure, IK is the angular bisector of
    • ∠I
    • &
    • ∠K
    • HI
    • =
    • 20 cm
    • ,
    • IJ
    • =
    • 20 cm
    • and
    • JK
    • =
    • 24 cm
    • .
    • Find
    • KH
  • (i)
    24.00 cm
  • (ii)
    25.00 cm
  • (iii)
    22.00 cm
  • (iv)
    23.00 cm
  • (v)
    26.00 cm
Question 52
52.
In the given figure, CDE is a triangle and 'O' is a point inside △CDE. The angular bisector of ∠DOC, ∠EOD & ∠COE meet CD, DE & EC at F, G & H respectively . Then
  • (i)
    CF . DG . EH = FG . GH . HF
  • (ii)
    CF . DG . EH = OC . OD . OE
  • (iii)
    CF . DG . EH = CD . DE . EC
  • (iv)
    CF . DG . EH = OF . OG . OH
  • (v)
    CF . DG . EH = FD . GE . HC
Question 53
53.
In the given figure, if A, Q, R, S, T, U are equidistant and RP ∥ UB and AB = 27 cm. Find AP
  • (i)
    8.80 cm
  • (ii)
    9.80 cm
  • (iii)
    11.80 cm
  • (iv)
    10.80 cm
  • (v)
    12.80 cm
Question 54
54.
From the given figure and values, find x
  • (i)
    (
    1
    ,
    19
    )
  • (ii)
    (
    18
    ,
    0
    )
  • (iii)
    (
    20
    ,
    -1
    )
  • (iv)
    (
    17
    ,
    -2
    )
  • (v)
    (
    17
    ,
    -1
    )
Question 55
55.
If the measures are as shown in the given figure, find  FG
  • (i)
    22.0 cm
  • (ii)
    23.0 cm
  • (iii)
    20.0 cm
  • (iv)
    21.0 cm
  • (v)
    19.0 cm
Question 56
56.
    • In the given figure, the two circles touch each other internally.
    • Diameter
    • OB
    • passes through the centre of the smaller circle.
    • OX = 10 cm
    • ,
    • OY = 24 cm
    • and radius of the inner circle is
    • 6.4 cm
    • .
    • Find the radius of the outer circle.
  • (i)
    16.36 cm
  • (ii)
    14.36 cm
  • (iii)
    17.36 cm
  • (iv)
    15.36 cm
  • (v)
    13.36 cm
    Assignment Key

  •  1) (iii)
  •  2) (i)
  •  3) (iii)
  •  4) (ii)
  •  5) (iii)
  •  6) (iv)
  •  7) (i)
  •  8) (iv)
  •  9) (iv)
  •  10) (v)
  •  11) (v)
  •  12) (iv)
  •  13) (iv)
  •  14) (iii)
  •  15) (iv)
  •  16) (v)
  •  17) (i)
  •  18) (iii)
  •  19) (i)
  •  20) (v)
  •  21) (v)
  •  22) (i)
  •  23) (ii)
  •  24) (v)
  •  25) (i)
  •  26) (iii)
  •  27) (i)
  •  28) (iii)
  •  29) (ii)
  •  30) (ii)
  •  31) (iv)
  •  32) (v)
  •  33) (ii)
  •  34) (i)
  •  35) (i)
  •  36) (ii)
  •  37) (iv)
  •  38) (i)
  •  39) (iv)
  •  40) (iii)
  •  41) (iii)
  •  42) (i)
  •  43) (v)
  •  44) (iv)
  •  45) (v)
  •  46) (iv)
  •  47) (ii)
  •  48) (i)
  •  49) (i)
  •  50) (v)
  •  51) (i)
  •  52) (v)
  •  53) (iv)
  •  54) (v)
  •  55) (iv)
  •  56) (iv)