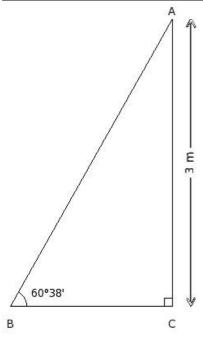
Name: Heights and Distances using Tables

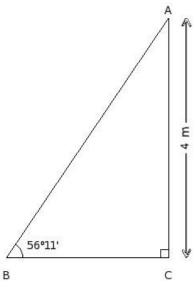

Chapter : Heights and Distances

Grade: ICSE Grade X

License: Non Commercial Use

A tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower is found to be $60^{\circ}38'$. If the height of the tower is 3 m, find the distance between the observation point and the top of the tower.

					Fro	m Tabl	e of Na	tural T	angent	S						
•	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	60	1.7321	1.7391	1.7461	1.7532	1.7603	1.7675	1.7747	1.7820	1.7893	1.7966	12	24	36	48	60
					Fro	m Tab	le of Na	atural S	ines							
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2' 3	' 4'	5'	
	60	0.8660	0.8669	0.8678	0.8686	0.8695	0.8704	0.8712	0.8721	0.8729	0.8738	1	3 4	1 6	7	

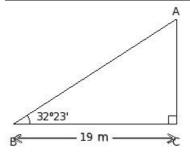


1.

(i) 5.44 m (ii) 3.44 m (iii) 1.44 m (iv) 4.44 m (v) 2.44 m

A tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the tower is found to be 56°11'. If the height of the tower is 4 m, find the distance between the observation point and the foot of the tower.

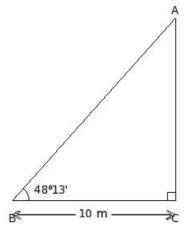
				Fro	m Tabl	e of Na	tural T	angent	S					
x° 0' 6' 12' 18' 24' 30' 36' 42' 48' 54' 1' 2' 3' 4' 5' 56 1.4826 1.4882 1.4938 1.4994 1.5051 1.5108 1.5166 1.5224 1.5282 1.5340 10 19 29 38 48														
56	1.4826	1.4882	1.4938	1.4994	1.5051	1.5108	1.5166	1.5224	1.5282	1.5340	10	19	29 3	88 48
				Fro	m Tab	le of Na	atural S	Sines						
χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1' 2	2' 3	4'!	5'
56	0.8290	0.8300	0.8310	0.8320	0.8329	0.8339	0.8348	0.8358	0.8369	0.8377	2	3 5	7	8


2.

3.

(i) $4.68 \, \text{m}$ (ii) $0.68 \, \text{m}$ (iii) $1.68 \, \text{m}$ (iv) $2.68 \, \text{m}$ (v) $3.68 \, \text{m}$

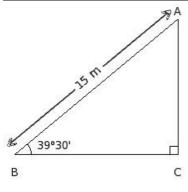
A pole stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the pole is found to be 32°23'. If the distance between the observation point and the foot of the pole is 19 m, find the distance between the observation point and the top of the pole.


				Fron	m Table	of Nat	tural Ta	angents	5						
χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
32	0.6249	0.6273	0.6297	0.6322	0.6346	0.6371	0.6395	0.6420	0.6445	0.6469	4	8	12	17	21
				Fror	n Table	of Nat	ural Co	sines							
χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4' 5	51
32	0.8480	0.8471	0.8462	0.8453	0.8443	0.8434	0.8425	0.8415	0.8406	0.8393	2	3	5	6 8	3

(i) 22.50 m (ii) 27.50 m (iii) 25.50 m (iv) 19.50 m (v) 17.50 m

A building stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the building is found to be $48^{\circ}13'$. If the distance between the observation point and the foot of the building is 10 m, find the height of the building.

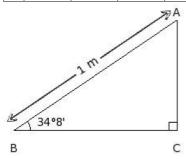
				Fro	m Table	e of Na	tural Ta	angent	S						
χ°	° 0' 6' 12' 18' 24' 30' 36' 42' 48' 54' 1'2' 3' 4' 5' 8 1.1106 1.1145 1.1184 1.1224 1.1263 1.1303 1.1343 1.1383 1.1423 1.1463 7 13 20 27 33														
48	1.1106	1.1145	1.1184	1.1224	1.1263	1.1303	1.1343	1.1383	1.1423	1.1463	7	13	20	27	33
	From Table of Natural Cosines														
						J 01 114	carar c	5511105							1
χ°															


4.

5.

(i) 6.19 m (ii) 16.19 m (iii) 11.19 m (iv) 8.19 m (v) 14.19 m

A radio tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the radio tower is found to be 39°30'. If the distance between the observation point and the top of the radio tower is 15 m, find the height of the radio tower.


				Fre	om Tab	le of N	atural S	Sines						
Χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3' /	4' 5'
39	0.6293	0.6307	0.6320	0.6334	0.6347	0.6361	0.6374	0.6388	0.6401	0.6414	2	5	7	9 12
				F	. T-bl-	- C NI-4								
				Fror	n rabie	e or nat	ural Co	sines						
χ°	0'	6'	12'	18'	24'	30' 0.7216	36'	42'	48'	54'	1'	2'	3' 4	4' 5'

(i) 10.54 m (ii) 8.54 m (iii) 7.54 m (iv) 11.54 m (v) 9.54 m

A chimney stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the chimney is found to be 34°8'. If the distance between the observation point and the top of the chimney is 1 m, find the distance between the observation point and the foot of the chimney.

_					Fre	om Tab	le of N	atural S	Sines							
ο.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	34	0.5592	0.5606	0.5621	0.5635	0.5650	0.5664	0.5678	0.5693	0.5707	0.5721	2	5	7	9	12
					Fror	n Table	of Nat	ural Co	sines							
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4' !	5"
	34	0.8290	0.8281	0.8271	0.8261	0.8251	0.8241	0.8231	0.8221	0.8211	0.8202	2	3	5	7	8

6

(i) 1.83 m (ii) 7.83 m (iii) 0.83 m (iv) 8.83 m (v) 2.83 m

The upper part of a tree is broken into two parts without being detatched. It makes an angle of 56°34' with the ground. The top of the tree touches the ground at a distance of 90 m from the foot of the tree. Find the height of the tree before it was broken.

_					Fro	m Tabl	e of Na	tural T	angent	:s						
/.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4' !	5'
	56	1.4826	1.4882	1.4938	1.4994	1.5051	1.5108	1.5166	1.5224	1.5282	1.5340	10	19	29 3	38 4	18
					Fro	m Tabl	e of Na	tural C	osines							
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1' 2	2' 3	4'	5'	
	56	0.5592	0.5577	0.5563	0.5548	0.5534	0.5519	0.5505	0.5490	0.5476	0.5461	2	5 7	10	12	

(i) 297.68 m (ii) 299.68 m (iii) 312.68 m (iv) 274.68 m

There are two temples one on each bank of a river, just opposite to each other. One of the temples is 100 m high. As observed from the top of this temple, the angles of depression of the top and foot of the other temple are 42°28' and 62°48' respectively. Find the width of the river.

_					Fro	m Table	e of Na	tural Ta	angent	S					
8.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3' 4	' 5'
	42	0.9004	0.9036	0.9067	0.9099	0.9131	0.9163	0.9195	0.9228	0.9260	0.9293	5	11	16 2	1 27
					Fro	m Tabl	e of Na	tural T	angent	S					
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	1 -	4' 5'
	62	1.8807	1.8887	1.8967	1.9047	1.9128	1.9210	1.9292	1.9375	1.9458	1.9542	14	27	41 5	55 68

(i) 54.39~m (ii) 48.39~m (iii) 46.39~m (iv) 51.39~m (v) 56.39~m

There are two temples one on each bank of a river, just opposite to each other. One of the temples is 170 m high. As observed from the top of this temple, the angles of depression of the top and foot of the other temple are 42°22' and 59°19' respectively. Find the height of the other temple.

					Fro	m Table	e of Na	tural Ta	angent	S						
9.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	42	0.9004	0.9036	0.9067	0.9099	0.9131	0.9163	0.9195	0.9228	0.9260	0.9293	5	11	16	21 2	27
					Fro	m Tabl	e of Na	tural T	angent	S						
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	59	1.6643	1.6709	1.6775	1.6842	1.6909	1.6977	1.7045	1.7113	1.7182	1.7251	11	23	34	45	56

(i) 73.00 m (ii) 81.00 m (iii) 83.00 m (iv) 75.00 m (v) 78.00 m

An observer 1.7 m tall, is 150 m away from a tower . The angle of elevation of the top of the tower from her eyes is $37^{\circ}14'$. Find the height of the tower .

10.					Fron	n Table	of Nat	tural Ta	angents	5						
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	37	0.7536	0.7563	0.7590	0.7618	0.7646	0.7673	0.7701	0.7729	0.7757	0.7785	5	9	14	19	23

(i) 115.69 m (ii) 122.69 m (iii) 127.69 m (iv) 91.69 m (v) 103.69 m

An aeroplane is flying horizontally 1000 m above the ground. From a point of observation, which lies exactly below the path of the aeroplane, the angle of elevation at a certain instant is 58°. After 20 sec, its elevation from the same point changes to 39°. Find the uniform speed of the aeroplane.

					Fro	m Tabl	e of Na	tural Ta	angent	S						
11.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	39	0.8098	0.8127	0.8156	0.8185	0.8214	0.8243	0.8273	0.8302	0.8332	0.8361	5	10	15	19 2	24
					Fro	m Tabl	e of Na	tural T	angent	S						
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	58	1.6003	1.6066	1.6128	1.6191	1.6255	1.6319	1.6383	1.6447	1.6512	1.6577	11	21	32	43	53

(i) 102.80 kmph (ii) 109.80 kmph (iii) 83.80 kmph (iv) 114.80 kmph (v) 133.80 kmph

Two poles of equal height are standing opposite to each other on either side of a road which is 30 m wide. From a point between them on the road, the angles of elevation of the top of the poles are $36^{\circ}41'$ and $40^{\circ}49'$ respectively. Find the height of each pole and the distances of the point from the two poles .

10					Fror	n Table	e of Nat	tural Ta	ngents	5				
12.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1' 2'	3' 4'	5'
	36	0.7265	0.7292	0.7319	0.7346	0.7373	0.7400	0.7427	0.7454	0.7481	0.7508	5 9	14 18	23
					Fro	m Table	e of Na	tural Ta	angent	s				
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1' 2'	3' 4'	5'

- (i) height = 11 m, distances away = 12.89 m, 15.11 m (ii) height = 14 m, distances away = 15.89 m, 18.11 m
- (iii) height = 10 m, distances away = 11.89 m, 14.11 m
- (iv) height = 13 m, distances away = 14.89 m, 17.11 m (v) height = 12 m, distances away = 13.89 m, 16.11 m

From the top of a light house which is 40 m high from the sea level, the angles of depression of two ships are $47^{\circ}33'$ and $34^{\circ}58'$. If one ship is exactly behind the other on the same side of the light house, find the distance between the two ships.

10					Fro	m Tabl	e of Na	tural Ta	angent	S				
13.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1' 2'	3'	4' 5'
	47	1.0724	1.0761	1.0799	1.0837	1.0875	1.0913	1.0951	1.0990	1.1028	1.1067	6 13	19 2	25 32
					Fror	n Table	of Nat	tural Ta	ngents	5				
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1' 2'	3' 4	' 5'

(i) 15.61 m (ii) 25.61 m (iii) 20.61 m (iv) 23.61 m (v) 17.61 m

From the top of a 14 m high building, the angle of elevation of the top of a cable tower is 40°51' and the angle of depression of its foot is 34°37'. Find the height of the cable tower.

					Fro	m Table	e of Na	tural Ta	angent	S					
14.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1' 2	2' 3'	4'	5'
	40	0.8391	0.8421	0.8451	0.8481	0.8511	0.8541	0.8571	0.8601	0.8632	0.8662	5 1	0 15	20	25
					Fror	n Table	of Nat	tural Ta	ngents	6					
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1' 2	' 3'	4'	5'
	34	0.6745	0.6771	0.6796	0.6822	0.6847	0.6873	0.6899	0.6924	0.6930	0.6976	4 9	13	17 2	22

(i) 28.54 m (ii) 26.54 m (iii) 36.54 m (iv) 31.54 m (v) 34.54 m

The angle of elevation of the top of a building from the foot of a tower is $34^{\circ}11'$. The angle of elevation of the top of the tower from the foot of the building is $30^{\circ}49'$. If the height of the tower is 25 m, find the height of the building .

					Fron	n Table	e of Nat	tural Ta	angents	5					
15.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1' 2	2' 3'	4'	5'
	34	0.6745	0.6771	0.6796	0.6822	0.6847	0.6873	0.6899	0.6924	0.6930	0.6976	4	9 13	17	22
					Fron	n Table	of Nat	tural Ta	angents	6					
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1' 2	2' 3'	4'	5'
	30	0.5774	0.5797	0.5820	0.5844	0.5867	0.5890	0.5914	0.5938	0.5961	0.5985	4	8 12	16	20

(i) 25.47 m (ii) 31.47 m (iii) 23.47 m (iv) 28.47 m (v) 33.47 m

A flag is hoisted at the top of a building . From a point on the ground, the angle of elevation of the top of the flag staff is $49^{\circ}7'$ and the angle of elevation of the top of the building is $48^{\circ}31'$. If the height of the building is 16 m, find the height of the flag staff .

					Fro	m Table	e of Na	tural Ta	angent	5						
.	х°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	48	1.1106	1.1145	1.1184	1.1224	1.1263	1.1303	1.1343	1.1383	1.1423	1.1463	7	13	20	27	33
					Fro	m Table	e of Na	tural Ta	angent	5						
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	49	1.1504	1.1544	1.1585	1.1626	1.1667	1.1708	1.1750	1.1792	1.1833	1.1875	7	14	21	27	34

(i) 7.34 m (ii) 1.34 m (iii) 2.34 m (iv) 8.34 m (v) 0.34 m

16.

A flag is hoisted at the top of a building . From a point on the ground, the angle of elevation of the top of the flag staff is 35°44' and the angle of elevation of the top of the building is 27°18'. If the height of the flag staff is 16 m, find the height of the building .

17					Fron	n Table	of Nat	tural Ta	ingents	5						
1/.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	27	0.5095	0.5117	0.5139	0.5161	0.5184	0.5206	0.5228	0.5250	0.5272	0.5295	4	7	11	15	18
					Fron	n Table	of Na	tural Ta	ngents	6						
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	35	0.7002	0.7028	0.7054	0.7080	0.7107	0.7133	0.7159	0.7186	0.7212	0.7239	4	9	13	17	22

(i) 40.60 m (ii) 45.60 m (iii) 35.60 m (iv) 37.60 m (v) 43.60 m

		Д	ssignment Key		
1) (ii)	2) (iv)	3) (i)	4) (iii)	5) (v)	6) (iii)
7) (ii)	8) (iv)	9) (v)	10) (i)	11) (ii)	12) (v)
13) (iii)	14) (iv)	15) (iv)	16) (v)	17) (i)	

Copyright © Small Systems Computing Pvt. Ltd.