Name: Heights and Distances using Tables

Chapter: Heights and Distances

Grade: ICSE Grade X

License: Non Commercial Use

A chimney stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the chimney is found to be $40^{\circ}53'$. If the height of the chimney is 18 m, find the distance between the observation point and the top of the chimney.

					Fro	m Tabl	e of Na	tural T	angent	S						
٠	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	40	0.8391	0.8421	0.8451	0.8481	0.8511	0.8541	0.8571	0.8601	0.8632	0.8662	5	10	15	20	25
					Fre	om Tab	le of N	atural S	Sines							
	x°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3' 4	' 5'	1
	40	0.6428	0.6441	0.6455	0.6468	0.6481	0.6494	0.6508	0.6521	0.6534	0.6547	2	4	7 9	11	.]

1.

(i) 22.50 m (ii) 30.50 m (iii) 32.50 m (iv) 24.50 m (v) 27.50 m

A radio tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the radio tower is found to be 40°16'. If the height of the radio tower is 14 m, find the distance between the observation point and the foot of the radio tower.

2					Fro	m Tabl	e of Na	tural Ta	angent	S						
۷.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	40	0.8391	0.8421	0.8451	0.8481	0.8511	0.8541	0.8571	0.8601	0.8632	0.8662	5	10	15	20	25
					Fre	om Tab	le of N	atural 9	Sines							
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	213	3' 4	' 5'	1
		0.0400		0.0455	0.0400	0.0404	0.0404	0.0500	0.0501	0.6534	0.05.47		4	7 0		_

(i) 21.53 m (ii) 19.53 m (iii) 11.53 m (iv) 13.53 m (v) 16.53 m

A radio tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the radio tower is found to be 31°11'. If the distance between the observation point and the foot of the radio tower is 14 m, find the distance between the observation point and the top of the radio tower.

				Fro	m Table	of Nat	tural Ta	angents	5						
χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
31	0.6009	0.6032	0.6056	0.6080	0.6104	0.6128	0.6152	0.6176	0.6200	0.6224	4	8	12	16	20
				Fror	n Table	of Nat	ural Co	sines							
χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3' 4	4' 5	T
31	0.8572	0.8563	0.8554	0.8545	0.8536	0.8526	0.8517	0.8508	0.8499	0.8490	2	3	5	6 8	3

3.

4.

(i) $11.36\,\mathrm{m}$ (ii) $13.36\,\mathrm{m}$ (iii) $19.36\,\mathrm{m}$ (iv) $16.36\,\mathrm{m}$ (v) $21.36\,\mathrm{m}$

A chimney stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the chimney is found to be $51^{\circ}52'$. If the distance between the observation point and the foot of the chimney is 14 m, find the height of the chimney.

				Fro	m Table	e of Na	tural T	angent	5						
χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
51	1.2349	1.2393	1.2437	1.2484	1.2527	1.2572	1.2617	1.2662	1.2708	1.2753	8	15	23	30	38
				Fro	m Table	e of Na	tural C	osines							
х°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3' 4	' 5'	7
51	0.6293	0.6280	0.6266	0.6252	0.6239	0.6225	0.6211	0.6198	0.6184	0.9170	2	5	7 9	12	2

(i) $20.83 \, \text{m}$ (ii) $22.83 \, \text{m}$ (iii) $17.83 \, \text{m}$ (iv) $12.83 \, \text{m}$ (v) $14.83 \, \text{m}$

A radio tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the radio tower is found to be 38°56'. If the distance between the observation point and the top of the radio tower is 7 m, find the height of the radio tower.

					Fre	om Tab	le of N	atural S	Sines							
٠	х°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	38	0.6157	0.6170	0.6184	0.6195	0.6211	0.6225	0.6239	0.6252	0.6266	0.6280	2	5	7	9	12
					Fror	n Table	of Nat	ural Co	sines							
	х°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4' :	5'
	38	0.7880	0.7869	0.7859	0.7848	0.7837	0.7826	0.7815	0.7804	0.7793	0.7782	2	4	5	7	9

5.

6.

(i) 5.40 m (ii) 3.40 m (iii) 6.40 m (iv) 2.40 m (v) 4.40 m

A radio tower stands vertically on the ground. From a point on the ground, the angle of elevation of the top of the radio tower is found to be 40°13'. If the distance between the observation point and the top of the radio tower is 18 m, find the distance between the observation point and the foot of the radio tower.

					Fre	om Tab	le of N	atural S	Sines						
•	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3' 4	' 5'
	40	0.6428	0.6441	0.6455	0.6468	0.6481	0.6494	0.6508	0.6521	0.6534	0.6547	2	4	7 9	11
					Fror	n Table	of Nat	ural Co	sines						
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3' 4	'5'
	40	0.7660	0.7649	0.7638	0.7627	0.7615	0.7604	0.7593	0.7581	0.7570	0.7559	2	4	6 7	9

(i) 13.74 m (ii) 16.74 m (iii) 18.74 m (iv) 8.74 m (v) 10.74 m

The upper part of a tree is broken into two parts without being detatched. It makes an angle of 43°28' with the ground. The top of the tree touches the ground at a distance of 110 m from the foot of the tree . Find the height of the tree before it was broken.

_					Fro	m Tabl	e of Na	tural T	angent	s						
/.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	43	0.9325	0.9358	0.9391	0.9424	0.9457	0.9490	0.9523	0.9556	0.9590	0.9623	6	11	17	22	28
					Fro	m Table	e of Na	tural C	osines							
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	213	3' 4	' 5'	7
	43	0.7314	0.7302	0.7290	0.7278	0.7266	0.7254	0.7242	0.7230	0.7218	0.7206	2	4	6 8	10)

(i) 273.83 m (ii) 248.83 m (iii) 257.83 m (iv) 255.83 m (v) 240.83 m

There are two temples one on each bank of a river, just opposite to each other. One of the temples is 30 m high. As observed from the top of this temple, the angles of depression of the top and foot of the other temple are 34°24' and 39°38' respectively. Find the width of the river .

					Fron	n Table	e of Nat	ural Ta	angents	5						
8.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2' :	3' 4	1' 5	5'
	34	0.6745	0.6771	0.6796	0.6822	0.6847	0.6873	0.6899	0.6924	0.6930	0.6976	4	9 1	L3 1	.7 2	<u>'</u> 2
					Fro	m Tabl	e of Na	tural Ta	angent	5						
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	39	0.8098	0.8127	0.8156	0.8185	0.8214	0.8243	0.8273	0.8302	0.8332	0.8361	5	10	15	19	24

(i) 31.22 m (ii) 39.22 m (iii) 41.22 m (iv) 33.22 m (v) 36.22 m

There are two temples one on each bank of a river, just opposite to each other. One of the temples is 160 m high. As observed from the top of this temple, the angles of depression of the top and foot of the other temple are 35°24' and 47°8' respectively. Find the height of the other temple.

					Fror	m Table	of Nat	tural Ta	angents	6						
١.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4' !	5'
	35	0.7002	0.7028	0.7054	0.7080	0.7107	0.7133	0.7159	0.7186	0.7212	0.7239	4	9	13	17 2	22
					Fro	m Table	e of Na	tural T	angent	s						
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	47	1.0724	1.0761	1.0799	1.0837	1.0875	1.0913	1.0951	1.0990	1.1028	1.1067	6	13	19	25	32

(i) 54.46 m (ii) 51.46 m (iii) 49.46 m (iv) 57.46 m (v) 59.46 m

9

An observer 1.7 m tall, is 50 m away from a tower . The angle of elevation of the top of the tower from her eyes is $47^{\circ}36'$. Find the height of the tower .

10.					Fro	m Table	e of Na	tural Ta	angent	S						
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	47	1.0724	1.0761	1.0799	1.0837	1.0875	1.0913	1.0951	1.0990	1.1028	1.1067	6	13	19	25	32

(i) 51.46 m (ii) 56.46 m (iii) 61.46 m (iv) 59.46 m (v) 53.46 m

An aeroplane is flying horizontally 1100 m above the ground. From a point of observation, which lies exactly below the path of the aeroplane, the angle of elevation at a certain instant is 60° . After 50 sec, its elevation from the same point changes to 31° . Find the uniform speed of the aeroplane .

					Fror	n Table	e of Nat	tural Ta	angents	5					
11.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	21 3	3' 4	' 5
	31	0.6009	0.6032	0.6056	0.6080	0.6104	0.6128	0.6152	0.6176	0.6200	0.6224	4	8 1	2 1	6 20
					Fro	m Tabl	e of Na	tural T	angent	:S					
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'
										1.7893					

(i) 86.08 kmph (ii) 91.08 kmph (iii) 89.08 kmph (iv) 81.08 kmph (v) 83.08 kmph

Two poles of equal height are standing opposite to each other on either side of a road which is 10 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 31°10' and 45°28' respectively. Find the height of each pole and the distances of the point from the two poles .

10					Fron	n Table	of Nat	tural Ta	ngents	5					
12.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4' 5'
	31	0.6009	0.6032	0.6056	0.6080	0.6104	0.6128	0.6152	0.6176	0.6200	0.6224	4	8	12 1	16 20
					Fro	m Table	e of Na	tural Ta	angent	S					
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4' 5'

- (i) height = 4.79 m, distances away = 4.73 m, 7.27 m (ii) height = 1.79 m, distances away = 1.73 m, 4.27 m
- (iii) height = 2.79 m, distances away = 2.73 m, 5.27 m (iv) height = 3.79 m, distances away = 3.73 m, 6.27 m
- (v) height =5.79 m, distances away =5.73 m, 8.27 m

From the top of a light house which is 25 m high from the sea level, the angles of depression of two ships are $41^{\circ}24'$ and $37^{\circ}22'$. If one ship is exactly behind the other on the same side of the light house, find the distance between the two ships.

					Fro	m Tabl	e of Na	tural Ta	angent	s					
13.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1' 2	' 3'	4'	5'
	41	0.8693	0.8724	0.8754	0.8785	0.8816	0.8847	0.8878	0.8910	0.8941	0.8972	5 1	0 16	21	26
					Fror	n Table	of Na	tural Ta	ngents	5					
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1' 2	3'	4'	5'
	37	0.7536	0.7563	0.7590	0.7618	0.7646	0.7673	0.7701	0.7729	0.7757	0.7785	5 9	14	19	23

(i) $3.38 \, \text{m}$ (ii) $6.38 \, \text{m}$ (iii) $4.38 \, \text{m}$ (iv) $2.38 \, \text{m}$ (v) $5.38 \, \text{m}$

From the top of a 10 m high building , the angle of elevation of the top of a cable tower is $31^{\circ}58'$ and the angle of depression of its foot is $21^{\circ}9'$. Find the height of the cable tower.

					Fron	n Table	e of Nat	tural Ta	ngents	5						
14.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	_	4'	5'
	31	0.6009	0.6032	0.6056	0.6080	0.6104	0.6128	0.6152	0.6176	0.6200	0.6224	4	8	12	16 2	20
					Fron	n Table	of Nat	tural Ta	ngents	6						
											- 41		21	21	4.1	
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	۷.۱	3.	4' :	5'

(i) 31.13 m (ii) 29.13 m (iii) 23.13 m (iv) 26.13 m (v) 21.13 m

The angle of elevation of the top of a building from the foot of a tower is 44°35'. The angle of elevation of the top of the tower from the foot of the building is 24°31'. If the height of the tower is 65 m, find the height of the building .

					Fro	m Table	e of Na	tural Ta	angent	S						
15.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	44	0.9657	0.9691	0.9725	0.9759	0.9793	0.9827	0.9861	0.9896	0.9930	0.9965	6	11	17	23	28
					Fror	n Table	of Nat	tural Ta	ngents	6						
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	24	0.4452	0.4473	0.4494	0.4515	0.4536	0.4557	0.4578	0.4599	0.4621	0.4642	4	7	11	14	18

(i) 157.45 m (ii) 138.45 m (iii) 155.45 m (iv) 124.45 m (v) 140.45 m

A flag is hoisted at the top of a building . From a point on the ground, the angle of elevation of the top of the flag staff is $49^{\circ}55'$ and the angle of elevation of the top of the building is $32^{\circ}45'$. If the height of the building is 15 m, find the height of the flag staff .

1.0					Fror	n Table	of Nat	tural Ta	ngents	6						
16.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	32	0.6249	0.6273	0.6297	0.6322	0.6346	0.6371	0.6395	0.6420	0.6445	0.6469	4	8	12 1	L7 2	21
					Fro	m Table	e of Na	tural Ta	angent	5						
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'
	49	1.1504	1.1544	1.1585	1.1626	1.1667	1.1708	1.1750	1.1792	1.1833	1.1875	7	14	21	27	34

(i) 7.71 m (ii) 15.71 m (iii) 17.71 m (iv) 12.71 m (v) 9.71 m

A flag is hoisted at the top of a building . From a point on the ground, the angle of elevation of the top of the flag staff is $50^{\circ}41'$ and the angle of elevation of the top of the building is $28^{\circ}28'$. If the height of the flag staff is 15 m, find the height of the building .

17					Fror	n Table	e of Nat	tural Ta	angents	5						
1/.	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4' 5	T
	28	0.5317	0.5340	0.5362	0.5384	0.5407	0.5430	0.5452	0.5475	0.5498	0.5520	4	8 [11 1	15 19	9
					Ero	m Tabl	o of Na	tural T								\neg
					FIO	III Tabi	e oi iva	tural Ta	angent	5						
	χ°	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4' 5	5'

(i) 11.98 m (ii) 14.98 m (iii) 6.98 m (iv) 16.98 m (v) 8.98 m

		A	ssignment Key		
1) (v)	2) (v)	3) (iv)	4) (iii)	5) (v)	6) (i)
7) (iv)	8) (v)	9) (i)	10) (ii)	11) (i)	12) (iv)
13) (iii)	14) (iv)	15) (v)	16) (iv)	17) (i)	

Copyright © Small Systems Computing Pvt. Ltd.