EduSahara™ Assignment
Name : Zeros of a Polynomial
Chapter : Polynomials and Factorisation
Grade : SSC Grade IX
License : Non Commercial Use
Question 1
1.
    • Find the value of
    • k
    • such that
    •  
    • 8
      x
      4
        +  
      32
      x
      3
         
      112
      x
      2
        +  
      k
      x
        +  
      360
    •  
    • is exactly divisible by
    • (
      x
      +
      5
      )
  • (i)
    -286
  • (ii)
    -290
  • (iii)
    -287
  • (iv)
    -288
  • (v)
    -289
Question 2
2.
    • If
    • 2
    • and
    • -2
    • are the zeros of the polynomial
    • f
      (
      x
      )
    • =
    • 8
      x
      4
         
      8
      x
      3
         
      38
      x
      2
        +  
      b
      x
        +  
      a
    • , find the value of
    • a
    • and
    • b
  • (i)
      • 31
      • ,
      • 23
  • (ii)
      • 24
      • ,
      • 32
  • (iii)
      • 24
      • ,
      • 33
  • (iv)
      • 25
      • ,
      • 32
  • (v)
      • 33
      • ,
      • 25
Question 3
3.
    • Find the value of
    • a
    • and
    • b
    • such that
    • a
      x
      4
        +  
      b
      x
      3
         
      72
      x
      2
         
      170
      x
         
      100
    •  
    • is exactly divisible by
    • (
      x
      2
       
      3
      x
      10
      )
  • (i)
      • 4
      • ,
      • 2
  • (ii)
      • 3
      • ,
      • 5
  • (iii)
      • 1
      • ,
      • 3
  • (iv)
      • 4
      • ,
      • 3
  • (v)
      • 5
      • ,
      • 2
Question 4
4.
    • If
    • 5

      3
    • is the zero of the polynomial
    • f
      (
      x
      )
    • =
    • 3
      x
      2
        +  
      10
      x
        +  
      k
    •  
    • ,
    • find
    • k
  • (i)
    -25
  • (ii)
    -23
  • (iii)
    -28
  • (iv)
    -24
  • (v)
    -26
Question 5
5.
    • If the polynomial
    • f
      (
      x
      )
    • =
    • 9
      x
      2
        +  
      15
      x
        +  
      k
    •  
    • is exactly divisible by
    •  
    • (
      3
      x
      +
      2
      )
    •  
    • ,
    • find
    • k
  • (i)
    8
  • (ii)
    6
  • (iii)
    5
  • (iv)
    7
  • (v)
    4
Question 6
6.
    • If the polynomials
    •  
    • a
      x
      2
        +  
      x
         
      31
    •  
    • and
    •    
      2
      x
      2
        +  
      a
      x
         
      11
    • leave the same remainder when divided by
    • (
      x
      2
      )
    • ,
    • find the value of
    • a
  • (i)
    5
  • (ii)
    2
  • (iii)
    8
  • (iv)
    6
  • (v)
    4
Question 7
7.
Which of the following are true?
a)
Zero of a polynomial and zero polynomial are synonymous
b)
Zero of a polynomial is the value of the variable for which the polynomial value is zero
c)
A linear polynomial in one variable has only one root
d)
A polynomial of degree n has atmost n zeros
e)
Zero of a polynomial and root of the polynomial are synonymous
f)
If (x + a) is a factor of f(x), then f(a) = 0
g)
If (x - a) is a factor of f(x), then f(a) = 0
  • (i)
    {a,e,g}
  • (ii)
    {a,b}
  • (iii)
    {a,f,d}
  • (iv)
    {f,c}
  • (v)
    {b,c,d,e,g}
Question 8
8.
    • If
    • (
      x
      2
       
      1
      )
    • is a factor of
    •  
    • a
      x
      4
        +  
      b
      x
      3
        +  
      c
      x
      2
        +  
      d
      x
        +  
      e
    • ,
    • which of the following are true ?
a)
a + b + c + d + e = 0
b)
a + b + c = 0
c)
a + b + c = d + e
d)
d + e = 0
e)
a + c + e = 0
f)
b + d = 0
  • (i)
    {b,a}
  • (ii)
    {c,a,e}
  • (iii)
    {d,b,f}
  • (iv)
    {a,e,f}
  • (v)
    {c,e}
Question 9
9.
    • Find the value of
    • k
    • such that
    •  
    • 8
      x
      3
         
      12
      x
      2
         
      32
      x
        +  
      k
    •  
    • is exactly divisible by
    • (
      2
      x
      4
      )
  • (i)
    48
  • (ii)
    45
  • (iii)
    49
  • (iv)
    51
  • (v)
    47
Question 10
10.
    • If
    • 3
    • and
    • -1
    • are the zeros of the polynomial
    • f
      (
      x
      )
    • =
    • 4
      x
      4
        +  
      a
      x
      2
        +  
      b
      x
    • , find the value of
    • a
    • and
    • b
  • (i)
      • -28
      • ,
      • -24
  • (ii)
      • -28
      • ,
      • -23
  • (iii)
      • -27
      • ,
      • -24
  • (iv)
      • -25
      • ,
      • -29
  • (v)
      • -23
      • ,
      • -27
Question 11
11.
    • Find the value of
    • a
    • and
    • b
    • such that
    • 2
      x
      4
        +  
      a
      x
      3
        +  
      b
      x
      2
         
      42
      x
         
      36
    •  
    • is exactly divisible by
    • (
      x
      2
       
      +
      x
      6
      )
  • (i)
      • 11
      • ,
      • 2
  • (ii)
      • 3
      • ,
      • 11
  • (iii)
      • 10
      • ,
      • 2
  • (iv)
      • 1
      • ,
      • 9
  • (v)
      • 10
      • ,
      • 3
Question 12
12.
    • If
    • -2
    • is the zero of the polynomial
    • f
      (
      x
      )
    • =
    • k
      x
      2
        +  
      27
      x
        +  
      30
    •  
    • ,
    • find
    • k
  • (i)
    7
  • (ii)
    9
  • (iii)
    6
  • (iv)
    3
  • (v)
    5
Question 13
13.
    • If the polynomial
    • f
      (
      x
      )
    • =
    • k
      x
      2
         
      14
      x
        +  
      6
    •  
    • is exactly divisible by
    •  
    • (
      2
      x
      6
      )
    •  
    • ,
    • find
    • k
  • (i)
    3
  • (ii)
    4
  • (iii)
    1
  • (iv)
    5
  • (v)
    7
Question 14
14.
    • If the polynomials
    •  
    •    
      2
      x
      2
        +  
      a
      x
        +  
      22
    •  
    • and
    • a
      x
      2
         
      4
      x
        +  
      34
    • leave the same remainder when divided by
    • (
      x
      2
      )
    • ,
    • find the value of
    • a
  • (i)
    (-8)
  • (ii)
    (-7)
  • (iii)
    (-3)
  • (iv)
    (-5)
  • (v)
    (-6)
    Assignment Key

  •  1) (iv)
  •  2) (ii)
  •  3) (i)
  •  4) (i)
  •  5) (ii)
  •  6) (i)
  •  7) (v)
  •  8) (iv)
  •  9) (i)
  •  10) (i)
  •  11) (iii)
  •  12) (iii)
  •  13) (ii)
  •  14) (v)