EduSahara™ Assignment
Name : Zeros of a Polynomial
Chapter : Polynomials and Factorisation
Grade : SSC Grade IX
License : Non Commercial Use
Question 1
1.
    • Find the value of
    • k
    • such that
    •  
    • k
      x
      4
         
      4
      x
      3
         
      96
      x
      2
        +  
      176
      x
         
      64
    •  
    • is exactly divisible by
    • (
      2
      x
      4
      )
  • (i)
    9
  • (ii)
    8
  • (iii)
    6
  • (iv)
    11
  • (v)
    7
Question 2
2.
    • If
    • 2
    • and
    • -1
    • are the zeros of the polynomial
    • f
      (
      x
      )
    • =
    • b
      x
      4
        +  
      9
      x
      3
        +  
      a
      x
         
      30
    • , find the value of
    • a
    • and
    • b
  • (i)
      • 3
      • ,
      • -36
  • (ii)
      • -37
      • ,
      • 3
  • (iii)
      • -37
      • ,
      • 2
  • (iv)
      • -36
      • ,
      • 2
  • (v)
      • 1
      • ,
      • -38
Question 3
3.
    • Find the value of
    • a
    • and
    • b
    • such that
    • 4
      x
      4
         
      34
      x
      3
        +  
      36
      x
      2
        +  
      b
      x
        +  
      a
    •  
    • is exactly divisible by
    • (
      4
      x
      2
       
      +
      6
      x
      4
      )
  • (i)
      • 189
      • ,
      • -101
  • (ii)
      • -99
      • ,
      • 190
  • (iii)
      • -100
      • ,
      • 190
  • (iv)
      • -100
      • ,
      • 191
  • (v)
      • 191
      • ,
      • -99
Question 4
4.
    • If
    • -4
    • is the zero of the polynomial
    • f
      (
      x
      )
    • =
    • k
      x
      2
        +  
      9
      x
        +  
      4
    •  
    • ,
    • find
    • k
  • (i)
    -1
  • (ii)
    2
  • (iii)
    1
  • (iv)
    3
  • (v)
    4
Question 5
5.
    • If the polynomial
    • f
      (
      x
      )
    • =
    • 2
      x
      2
        +  
      4
      x
        +  
      k
    •  
    • is exactly divisible by
    •  
    • (
      x
      +
      4
      )
    •  
    • ,
    • find
    • k
  • (i)
    -13
  • (ii)
    -16
  • (iii)
    -15
  • (iv)
    -18
  • (v)
    -17
Question 6
6.
    • If the polynomials
    •  
    • 3
      x
      2
        +  
      a
      x
         
      9
    •  
    • and
    • a
      x
      2
         
      5
      x
        +  
      51
    • leave the same remainder when divided by
    • (
      x
      3
      )
    • ,
    • find the value of
    • a
  • (i)
    (-2)
  • (ii)
    (-3)
  • (iii)
    (-4)
  • (iv)
    (-1)
  • (v)
    (-6)
Question 7
7.
Which of the following are true?
a)
A polynomial of degree n has atmost n zeros
b)
A linear polynomial in one variable has only one root
c)
Zero of a polynomial and root of the polynomial are synonymous
d)
Zero of a polynomial and zero polynomial are synonymous
e)
If (x - a) is a factor of f(x), then f(a) = 0
f)
If (x + a) is a factor of f(x), then f(a) = 0
g)
Zero of a polynomial is the value of the variable for which the polynomial value is zero
  • (i)
    {f,b}
  • (ii)
    {d,a}
  • (iii)
    {d,e,g}
  • (iv)
    {d,f,c}
  • (v)
    {a,b,c,e,g}
Question 8
8.
    • If
    • (
      x
      2
       
      1
      )
    • is a factor of
    •  
    • a
      x
      4
        +  
      b
      x
      3
        +  
      c
      x
      2
        +  
      d
      x
        +  
      e
    • ,
    • which of the following are true ?
a)
a + b + c = 0
b)
b + d = 0
c)
d + e = 0
d)
a + c + e = 0
e)
a + b + c = d + e
f)
a + b + c + d + e = 0
  • (i)
    {c,d}
  • (ii)
    {a,b}
  • (iii)
    {c,b,d}
  • (iv)
    {b,d,f}
  • (v)
    {e,a,f}
Question 9
9.
    • Find the value of
    • k
    • such that
    •  
    • k
      x
      3
        +  
      20
      x
      2
        +  
      24
      x
    •  
    • is exactly divisible by
    • (
      x
      +
      3
      )
  • (i)
    5
  • (ii)
    3
  • (iii)
    2
  • (iv)
    4
  • (v)
    6
Question 10
10.
    • If
    • 2
    • and
    • (
      -5

      2
      )
    • are the zeros of the polynomial
    • f
      (
      x
      )
    • =
    • 8
      x
      4
        +  
      b
      x
      3
        +  
      a
      x
      2
         
      220
      x
         
      400
    • , find the value of
    • a
    • and
    • b
  • (i)
      • 66
      • ,
      • 57
  • (ii)
      • 67
      • ,
      • 56
  • (iii)
      • 57
      • ,
      • 67
  • (iv)
      • 66
      • ,
      • 56
  • (v)
      • 55
      • ,
      • 65
Question 11
11.
    • Find the value of
    • a
    • and
    • b
    • such that
    • 2
      x
      4
         
      2
      x
      3
         
      42
      x
      2
        +  
      b
      x
        +  
      a
    •  
    • is exactly divisible by
    • (
      x
      2
       
      x
      20
      )
  • (i)
      • 41
      • ,
      • 2
  • (ii)
      • 3
      • ,
      • 41
  • (iii)
      • 40
      • ,
      • 3
  • (iv)
      • 1
      • ,
      • 39
  • (v)
      • 40
      • ,
      • 2
Question 12
12.
    • If
    • 1
    • is the zero of the polynomial
    • f
      (
      x
      )
    • =
    • k
      x
      2
         
      12
      x
        +  
      3
    •  
    • ,
    • find
    • k
  • (i)
    6
  • (ii)
    12
  • (iii)
    8
  • (iv)
    10
  • (v)
    9
Question 13
13.
    • If the polynomial
    • f
      (
      x
      )
    • =
    • 6
      x
      2
        +  
      k
      x
         
      4
    •  
    • is exactly divisible by
    •  
    • (
      2
      x
      1
      )
    •  
    • ,
    • find
    • k
  • (i)
    6
  • (ii)
    3
  • (iii)
    4
  • (iv)
    8
  • (v)
    5
Question 14
14.
    • If the polynomials
    •  
    • 5
      x
      2
        +  
      a
      x
         
      13
    •  
    • and
    • a
      x
      2
         
      2
      x
        +  
      9
    • leave the same remainder when divided by
    • (
      x
      2
      )
    • ,
    • find the value of
    • a
  • (i)
    4
  • (ii)
    2
  • (iii)
    (-1)
  • (iv)
    0
  • (v)
    1
    Assignment Key

  •  1) (ii)
  •  2) (iii)
  •  3) (iii)
  •  4) (ii)
  •  5) (ii)
  •  6) (ii)
  •  7) (v)
  •  8) (iv)
  •  9) (iv)
  •  10) (iv)
  •  11) (v)
  •  12) (v)
  •  13) (v)
  •  14) (v)