EduSahara™ Assignment
Name : Zeros of a Polynomial
Chapter : Polynomials and Factorisation
Grade : SSC Grade IX
License : Non Commercial Use
Question 1
1.
    • Find the value of
    • k
    • such that
    •  
    • k
      x
      3
         
      4
      x
      2
         
      16
      x
        +  
      16
    •  
    • is exactly divisible by
    • (
      2
      x
      2
      )
  • (i)
    1
  • (ii)
    4
  • (iii)
    5
  • (iv)
    3
  • (v)
    7
Question 2
2.
    • If
    • 3
    • and
    • -1
    • are the zeros of the polynomial
    • f
      (
      x
      )
    • =
    • b
      x
      4
        +  
      a
      x
      3
        +  
      17
      x
      2
        +  
      26
      x
         
      15
    • , find the value of
    • a
    • and
    • b
  • (i)
      • -20
      • ,
      • 4
  • (ii)
      • 3
      • ,
      • -21
  • (iii)
      • 5
      • ,
      • -19
  • (iv)
      • -20
      • ,
      • 5
  • (v)
      • -19
      • ,
      • 4
Question 3
3.
    • Find the value of
    • a
    • and
    • b
    • such that
    • 2
      x
      4
        +  
      a
      x
      3
        +  
      x
      2
        +  
      b
      x
        +  
      9
    •  
    • is exactly divisible by
    • (
      x
      2
       
      +
      2
      x
      3
      )
  • (i)
      • -20
      • ,
      • 10
  • (ii)
      • -22
      • ,
      • 8
  • (iii)
      • 9
      • ,
      • -21
  • (iv)
      • 9
      • ,
      • -20
  • (v)
      • 10
      • ,
      • -21
Question 4
4.
    • If
    • 4

      3
    • is the zero of the polynomial
    • f
      (
      x
      )
    • =
    • k
      x
      2
         
      7
      x
        +  
      4
    •  
    • ,
    • find
    • k
  • (i)
    6
  • (ii)
    4
  • (iii)
    0
  • (iv)
    3
  • (v)
    2
Question 5
5.
    • If the polynomial
    • f
      (
      x
      )
    • =
    • x
      2
        +  
      k
      x
         
      24
    •  
    • is exactly divisible by
    •  
    • (
      x
      4
      )
    •  
    • ,
    • find
    • k
  • (i)
    2
  • (ii)
    1
  • (iii)
    5
  • (iv)
    3
  • (v)
    0
Question 6
6.
    • If the polynomials
    •  
    • a
      x
      2
         
      3
      x
         
      25
    •  
    • and
    • 6
      x
      2
        +  
      a
      x
         
      46
    • leave the same remainder when divided by
    • (
      x
      +
      3
      )
    • ,
    • find the value of
    • a
  • (i)
    5
  • (ii)
    1
  • (iii)
    3
  • (iv)
    (-1)
  • (v)
    2
Question 7
7.
Which of the following are true?
a)
Zero of a polynomial and zero polynomial are synonymous
b)
If (x - a) is a factor of f(x), then f(a) = 0
c)
If (x + a) is a factor of f(x), then f(a) = 0
d)
A linear polynomial in one variable has only one root
e)
Zero of a polynomial and root of the polynomial are synonymous
f)
A polynomial of degree n has atmost n zeros
g)
Zero of a polynomial is the value of the variable for which the polynomial value is zero
  • (i)
    {b,d,e,f,g}
  • (ii)
    {a,b}
  • (iii)
    {c,d}
  • (iv)
    {a,f,g}
  • (v)
    {a,c,e}
Question 8
8.
    • If
    • (
      x
      2
       
      1
      )
    • is a factor of
    •  
    • a
      x
      4
        +  
      b
      x
      3
        +  
      c
      x
      2
        +  
      d
      x
        +  
      e
    • ,
    • which of the following are true ?
a)
b + d = 0
b)
a + b + c = 0
c)
d + e = 0
d)
a + c + e = 0
e)
a + b + c + d + e = 0
f)
a + b + c = d + e
  • (i)
    {f,b,e}
  • (ii)
    {a,d,e}
  • (iii)
    {c,d}
  • (iv)
    {b,a}
  • (v)
    {c,a,d}
Question 9
9.
    • Find the value of
    • k
    • such that
    •  
    • 8
      x
      3
        +  
      8
      x
      2
         
      2
      x
        +  
      k
    •  
    • is exactly divisible by
    • (
      2
      x
      +
      1
      )
  • (i)
    0
  • (ii)
    -5
  • (iii)
    -3
  • (iv)
    -2
  • (v)
    -1
Question 10
10.
    • If
    • 4
    • and
    • -1
    • are the zeros of the polynomial
    • f
      (
      x
      )
    • =
    • 4
      x
      4
         
      16
      x
      3
        +  
      a
      x
      2
        +  
      b
      x
    • , find the value of
    • a
    • and
    • b
  • (i)
      • -3
      • ,
      • 16
  • (ii)
      • -4
      • ,
      • 16
  • (iii)
      • 17
      • ,
      • -3
  • (iv)
      • 15
      • ,
      • -5
  • (v)
      • -4
      • ,
      • 17
Question 11
11.
    • Find the value of
    • a
    • and
    • b
    • such that
    • 4
      x
      4
         
      12
      x
      3
        +  
      b
      x
      2
        +  
      a
      x
        +  
      120
    •  
    • is exactly divisible by
    • (
      2
      x
      2
       
      +
      2
      x
      12
      )
  • (i)
      • 76
      • ,
      • -59
  • (ii)
      • 77
      • ,
      • -60
  • (iii)
      • 76
      • ,
      • -60
  • (iv)
      • -59
      • ,
      • 77
  • (v)
      • -61
      • ,
      • 75
Question 12
12.
    • If
    • 2
    • is the zero of the polynomial
    • f
      (
      x
      )
    • =
    • 4
      x
      2
         
      2
      x
        +  
      k
    •  
    • ,
    • find
    • k
  • (i)
    -13
  • (ii)
    -10
  • (iii)
    -12
  • (iv)
    -11
  • (v)
    -15
Question 13
13.
    • If the polynomial
    • f
      (
      x
      )
    • =
    • k
      x
      2
        +  
      6
      x
         
      12
    •  
    • is exactly divisible by
    •  
    • (
      2
      x
      2
      )
    •  
    • ,
    • find
    • k
  • (i)
    8
  • (ii)
    6
  • (iii)
    5
  • (iv)
    4
  • (v)
    7
Question 14
14.
    • If the polynomials
    •  
    •    
      x
      2
        +  
      a
      x
        +  
      25
    •  
    • and
    • a
      x
      2
         
      6
      x
         
      38
    • leave the same remainder when divided by
    • (
      x
      +
      3
      )
    • ,
    • find the value of
    • a
  • (i)
    3
  • (ii)
    0
  • (iii)
    2
  • (iv)
    4
  • (v)
    5
    Assignment Key

  •  1) (ii)
  •  2) (i)
  •  3) (iii)
  •  4) (iv)
  •  5) (i)
  •  6) (v)
  •  7) (i)
  •  8) (ii)
  •  9) (iv)
  •  10) (ii)
  •  11) (iii)
  •  12) (iii)
  •  13) (ii)
  •  14) (i)