EduSahara™ Assignment
Name : Factor Theorem
Chapter : Polynomials and Factorisation
Grade : SSC Grade IX
License : Non Commercial Use
Question 1
1.
    • Find the value of
    • k
    • such that
    •  
    • k
      x
      4
        +  
      5
      x
      3
        +  
      4
      x
      2
        +  
      x
    •  
    • is exactly divisible by
    • (
      x
      +
      1
      )
  • (i)
    -1
  • (ii)
    2
  • (iii)
    4
  • (iv)
    3
  • (v)
    1
Question 2
2.
    • If
    • 4
    • and
    • (
      -3

      2
      )
    • are the zeros of the polynomial
    • f
      (
      x
      )
    • =
    • 8
      x
      4
         
      20
      x
      3
         
      98
      x
      2
        +  
      a
      x
        +  
      b
    • , find the value of
    • a
    • and
    • b
  • (i)
      • 125
      • ,
      • 300
  • (ii)
      • 299
      • ,
      • 124
  • (iii)
      • 126
      • ,
      • 300
  • (iv)
      • 125
      • ,
      • 301
  • (v)
      • 301
      • ,
      • 126
Question 3
3.
    • Find the value of
    • a
    • and
    • b
    • such that
    • 4
      x
      4
        +  
      10
      x
      3
        +  
      a
      x
      2
        +  
      b
      x
    •  
    • is exactly divisible by
    • (
      2
      x
      2
       
      +
      9
      x
      5
      )
  • (i)
      • -45
      • ,
      • 20
  • (ii)
      • 19
      • ,
      • -47
  • (iii)
      • -46
      • ,
      • 20
  • (iv)
      • -46
      • ,
      • 21
  • (v)
      • 21
      • ,
      • -45
Question 4
4.
    • If the polynomial
    • f
      (
      x
      )
    • =
    • 2
      x
      2
        +  
      k
      x
        +  
      12
    •  
    • is exactly divisible by
    •  
    • (
      x
      3
      )
    •  
    • ,
    • find
    • k
  • (i)
    -8
  • (ii)
    -10
  • (iii)
    -13
  • (iv)
    -11
  • (v)
    -9
Question 5
5.
    • If the polynomials
    •  
    •    
      x
      2
        +  
      a
      x
         
      2
    •  
    • and
    • a
      x
      2
        +  
      4
      x
        +  
      61
    • leave the same remainder when divided by
    • (
      x
      +
      3
      )
    • ,
    • find the value of
    • a
  • (i)
    (-4)
  • (ii)
    (-8)
  • (iii)
    (-5)
  • (iv)
    (-6)
  • (v)
    (-3)
Question 6
6.
    • If
    • (
      x
      2
       
      1
      )
    • is a factor of
    •  
    • a
      x
      4
        +  
      b
      x
      3
        +  
      c
      x
      2
        +  
      d
      x
        +  
      e
    • ,
    • which of the following are true ?
a)
b + d = 0
b)
a + b + c + d + e = 0
c)
a + c + e = 0
d)
d + e = 0
e)
a + b + c = d + e
f)
a + b + c = 0
  • (i)
    {d,a}
  • (ii)
    {e,a,b}
  • (iii)
    {e,b}
  • (iv)
    {f,d,c}
  • (v)
    {a,b,c}
Question 7
7.
    • Which of the following are true ?
a)
Division of a polynomial with another polynomial stops when the degree of the remainder equals the degree of the divisor
b)
If p(a) = 0, then (x + a) perfectly divides p(x)
c)
If the degree of p(x) is less then the degree of d(x), we should not divide p(x) with d(x)
d)
If p(x) is divided by (x - a), the remainder is p(a)
  • (i)
    {b,d}
  • (ii)
    {c,d}
  • (iii)
    {a,d,c}
  • (iv)
    {a,c}
  • (v)
    {a,b,c}
Question 8
8.
    • Which of the following are possible values
    • for the length and breadth of a rectangle
    • whose area is
    • (
      18
      x
      2
       
      +
      30
      x
      12
      )
  • (i)
      • (
        6
        x
        6
        )
      • (
        3
        x
        +
        2
        )
  • (ii)
      • (
        6
        x
        +
        6
        )
      • (
        3
        x
        +
        2
        )
  • (iii)
      • (
        2
        x
        +
        5
        )
      • (
        3
        x
        +
        2
        )
  • (iv)
      • (
        6
        x
        6
        )
      • (
        3
        x
        2
        )
  • (v)
      • (
        6
        x
        +
        6
        )
      • (
        3
        x
        2
        )
Question 9
9.
    • In which of the cases,
    •  
    • g
      (
      x
      )
    •  
    • is a factor of
    •  
    • f
      (
      x
      )
    • ?
  • (i)
    f
    (
    x
    )
    =
    (
    4
    x
    3
     
    +
    4
    x
    2
     
    +
    133
    x
    +
    245
    )
    ,
    g
    (
    x
    )
    =
    (
    x
    +
    5
    )
  • (ii)
    f
    (
    x
    )
    =
    (
    6
    x
    3
     
    5
    x
    2
     
    134
    x
    +
    45
    )
    ,
    g
    (
    x
    )
    =
    (
    3
    x
    +
    1
    )
  • (iii)
    f
    (
    x
    )
    =
    (
    4
    x
    3
     
    4
    x
    2
     
    +
    161
    x
    +
    441
    )
    ,
    g
    (
    x
    )
    =
    (
    2
    x
    +
    5
    )
  • (iv)
    f
    (
    x
    )
    =
    (
    2
    x
    3
     
    17
    x
    2
     
    14
    x
    +
    245
    )
    ,
    g
    (
    x
    )
    =
    (
    2
    x
    +
    9
    )
  • (v)
    f
    (
    x
    )
    =
    (
    12
    x
    3
     
    92
    x
    2
     
    157
    x
    +
    63
    )
    ,
    g
    (
    x
    )
    =
    (
    x
    +
    7
    )
Question 10
10.
    • Which of the following polynomials is a multiple of
    • (
      x
      5
      )
    • ?
  • (i)
    (
    2
    x
    3
     
    15
    x
    2
     
    +
    28
    x
    15
    )
  • (ii)
    (
    6
    x
    3
     
    23
    x
    2
     
    +
    29
    x
    12
    )
  • (iii)
    (
    9
    x
    3
     
    13
    x
    +
    4
    )
  • (iv)
    (
    27
    x
    3
     
    9
    x
    2
     
    48
    x
    +
    16
    )
  • (v)
    (
    18
    x
    3
     
    27
    x
    2
     
    32
    x
    +
    48
    )
Question 11
11.
    • Which of the following polynomials has
    • (
      2
      x
      +
      2
      )
    • as a factor ?
  • (i)
    (
    3
    x
    3
     
    3
    x
    2
     
    3
    x
    +
    3
    )
  • (ii)
    (
    6
    x
    3
     
    +
    9
    x
    2
     
    6
    x
    9
    )
  • (iii)
    (
    6
    x
    3
     
    9
    x
    2
     
    15
    x
    +
    18
    )
  • (iv)
    (
    2
    x
    3
     
    3
    x
    2
     
    5
    x
    +
    6
    )
  • (v)
    (
    2
    x
    3
     
    4
    x
    2
     
    2
    x
    +
    4
    )
Question 12
12.
    • If
    • f
      (
      x
      )
    • =
    • (
      12
      x
      3
       
      +
      56
      x
      2
       
      +
      84
      x
      +
      40
      )
    • and
    • g
      (
      x
      )
    • =
    • (
      6
      x
      3
       
      +
      28
      x
      2
       
      64
      )
    • have a common factor, find the common factor
  • (i)
    (
    3
    x
    +
    5
    )
  • (ii)
    (
    x
    +
    4
    )
  • (iii)
    (
    2
    x
    +
    2
    )
  • (iv)
    (
    2
    x
    +
    4
    )
  • (v)
    (
    3
    x
    4
    )
Question 13
13.
    • Which of the following polynomials is not a multiple of
    • (
      3
      x
      +
      4
      )
    • ?
  • (i)
    (
    3
    x
    2
     
    +
    7
    x
    +
    4
    )
  • (ii)
    (
    6
    x
    2
     
    +
    5
    x
    25
    )
  • (iii)
    (
    6
    x
    2
     
    +
    23
    x
    +
    20
    )
  • (iv)
    (
    3
    x
    2
     
    2
    x
    8
    )
  • (v)
    (
    9
    x
    2
     
    3
    x
    20
    )
    Assignment Key

  •  1) (ii)
  •  2) (i)
  •  3) (iii)
  •  4) (ii)
  •  5) (iii)
  •  6) (v)
  •  7) (ii)
  •  8) (v)
  •  9) (ii)
  •  10) (i)
  •  11) (v)
  •  12) (iv)
  •  13) (ii)