

- The remainder when (-p) is divided by 2 is
   (i) (-1) (ii) 3 (iii) 1 (iv) 0 (v) (-3)
- 2. The remainder when  $3i^2$  is divided by (i+1) is

(i) 4 (ii) 5 (iii) 3 (iv) 0 (v) 2

- 3. The remainder when (3*f*-5) is divided by (*f*-2) is
  (i) 3 (ii) 0 (iii) 1 (iv) 2 (v) (-2)
- 4. The remainder when (3b<sup>2</sup>+5b) is divided by (b+7) is
  (i) 114 (ii) 109 (iii) 111 (iv) 112 (v) 113
- 5. The remainder when  $(-5q^2-4q+3)$  is divided by (q+4) is (i) (-63) (ii) (-60) (iii) (-62) (iv) (-58) (v) (-61)
- 6. The remainder when  $(-6x^4-6x^3-3x^2-3x+8)$  is divided by (x-1) is

(i) (-13) (ii) (-10) (iii) (-7) (iv) (-9) (v) (-11)

7. If  $\frac{5}{2}$  and -1 are the zeros of the polynomial  $f(x) = 4x^4 + bx^3 - 19x^2 + 23x + a$ , find the value of a and b

(i) 31,-8 (ii) 30,-7 (iii) -9,29 (iv) 30,-8 (v) -7,31

8. If the polynomials  $ax^2 - 2x - 57$  and  $-4x^2 + ax + 45$  leave the same remainder when divided by (x+3), find the value of a

- (i) 4 (ii) 5 (iii) 3 (iv) 6 (v) 7
- 9. Which of the following are true ?
  - a) If the degree of p(x) is less then the degree of d(x), we should not divide p(x) with d(x)
  - b) Division of a polynomial with another polynomial stops when the degree of the remainder equals the degree of the divisor
  - c) If p(a) = 0, then (x + a) perfectly divides p(x)
  - d) If p(x) is divided by (x a), the remainder is p(a)

(i) {b,c,a} (ii) {b,a} (iii) {c,d} (iv) {b,d,a} (v) {a,d}

10. Find the remainder when  $(2x^2 - x - 3)$  is divided by (3x+4)

(i)  $\frac{19}{9}$  (ii)  $\frac{17}{9}$  (iii)  $\frac{19}{11}$  (iv)  $\frac{5}{3}$  (v)  $\frac{15}{7}$ 

| Assignment Key |          |          |          |        |         |  |
|----------------|----------|----------|----------|--------|---------|--|
| 1) (iv)        | 2) (iii) | 3) (iii) | 4) (iv)  | 5) (v) | 6) (ii) |  |
| 7) (iv)        | 8) (ii)  | 9) (v)   | 10) (ii) |        |         |  |

Copyright © Small Systems Computing Pvt. Ltd.