Name: Factor Theorem

Chapter : Polynomials

Grade: CBSE Grade IX

License : Non Commercial Use

- 1. Find the value of k such that $kx^3 6x^2$ is exactly divisible by (x-6)
 - (i) 2 (ii) 0 (iii) 1 (iv) 3 (v) -1
- 2. If $\frac{1}{2}$ and -5 are the zeros of the polynomial $f(x) = 2x^4 x^3 + bx^2 + 79x + a$, find the value of a and b
 - (i) -37,-29 (ii) -30,-38 (iii) -39,-31 (iv) -29,-38 (v) -30,-37
- 3. Find the value of a and b such that $x^4 + bx^3 + ax^2 25x + 50$ is exactly divisible by $(x^2 + 4x 5)$
 - (i) -27,2 (ii) 0,-28 (iii) -27,1 (iv) 2,-26 (v) -26,1
- 4. If the polynomial $f(x) = 3x^2 + kx + 15$ is exactly divisible by (3x+3), find k
 - (i) 20 (ii) 19 (iii) 15 (iv) 18 (v) 17
- If the polynomials $ax^2 5x 36$ and $4x^2 + ax 12$ leave the same remainder when divided by (x+2), find the value of a
 - (i) 3 (ii) 4 (iii) 5 (iv) 6 (v) 8
- 6. Which of the following are true?
 - a) A linear polynomial in one variable has only one root
 - b) Zero of a polynomial and zero polynomial are synonymous
 - c) Zero of a polynomial and root of the polynomial are synonymous
 - d) If (x a) is a factor of f(x), then f(a) = 0
 - e) If (x + a) is a factor of f(x), then f(a) = 0
 - f) A polynomial of degree n has atmost n zeros
 - g) Zero of a polynomial is the value of the variable for which the polynomial value is zero
 - (i) $\{e,c\}$ (ii) $\{b,e,d\}$ (iii) $\{a,c,d,f,g\}$ (iv) $\{b,a\}$ (v) $\{b,f,g\}$
- 7. If (x^2-1) is a factor of $ax^4 + bx^3 + cx^2 + dx + e$, which of the following are true?
 - a) b + d = 0
 - b) a + b + c = 0
 - c) d + e = 0
 - d) a + b + c + d + e = 0
 - e) a + b + c = d + e
 - f) a + c + e = 0
 - (i) $\{a,d,f\}$ (ii) $\{c,d\}$ (iii) $\{e,b,f\}$ (iv) $\{c,a,d\}$ (v) $\{b,a\}$

- 8. Which of the following are true?
 - a) If p(x) is divided by (x a), the remainder is p(a)
 - b) If p(a) = 0, then (x + a) perfectly divides p(x)
 - c) If the degree of p(x) is less then the degree of d(x), we should not divide p(x) with d(x)
 - d) Division of a polynomial with another polynomial stops when the degree of the remainder equals the degree of the divisor
 - (i) $\{a,c\}$ (ii) $\{b,d,a\}$ (iii) $\{b,c,a\}$ (iv) $\{b,a\}$ (v) $\{d,c\}$
- Which of the following are possible values for the length and breadth of a rectangle whose area is 9.
- 9. $(-16x^2 36x 18)$
 - (i) (4x-6)(-4x+3) (ii) (-5x+2)(-4x+3) (iii) (4x+6)(-4x+3) (iv) (4x+6)(-4x-3)
 - (v) (4x-6)(-4x-3)
- 10. In which of the cases, g(x) is a factor of f(x)?
 - (i) $f(x) = (-3x^3 5x^2 + 243x + 405), g(x) = (-2x + 1)$ (ii) $f(x) = (-3x^3 11x^2 + 14x + 40), g(x) = (-x + 2)$
 - (iii) $f(x) = (2x^3 x^2 162x + 81), g(x) = (x+4)$ (iv) $f(x) = (-x^3 4x^2 + 81x + 324), g(x) = (3x+5)$
 - (v) $f(x)=(-3x^3-26x^2+19x+90), q(x)=(-x+9)$
- 11. Which of the following polynomials is a multiple of (x+5)?
 - (i) $(3x^3+14x^2+21x+10)$ (ii) $(2x^3+5x^2+x-2)$ (iii) $(6x^3+x^2-4x+1)$ (iv) $(9x^3+57x^2+55x-25)$
 - (v) $(9x^3+30x^2+19x-10)$
- 12. Which of the following polynomials has (x-1) as a factor?
 - (i) $(2x^3-9x^2+13x-6)$ (ii) $(2x^3-4x^2-2x+4)$ (iii) $(4x^3-22x^2+36x-18)$ (iv) $(2x^3-6x^2-2x+6)$
 - (v) $(2x^3-13x^2+27x-18)$
- 13. If $f(x) = (9x^3 + 45x^2 + 74x + 40)$ and $g(x) = (3x^3 8x^2 7x + 12)$ have a common factor, find the common factor
 - (i) (x-1) (ii) (3x+5) (iii) (x-3) (iv) (3x+4) (v) (x+2)
- 14. Which of the following polynomials is not a multiple of (3x-1)?
 - (i) $(3x^2-7x+2)$ (ii) $(3x^2+2x-1)$ (iii) $(3x^2+11x-4)$ (iv) (x^2+5x+4) (v) $(3x^2-16x+5)$

Assignment Key					
1) (iii)	2) (ii)	3) (iii)	4) (iv)	5) (iii)	6) (iii)
7) (i)	8) (i)	9) (iv)	10) (ii)	11) (iv)	12) (i)
13) (iv)	14) (iv)				

Copyright © Small Systems Computing Pvt. Ltd.