

1. O is the centre of the circle. If \angle FOH = 110°, find \angle E

- (i) 60° (ii) 70° (iii) 55° (iv) 85° (v) 65°
- 2. O is the centre of the circle. If $\angle EFG$ = 118.5°, find $\angle GOH$

3. O is the centre of the circle and \angle GDF = 33°, find \angle DEF

(i) 123° (ii) 133° (iii) 153° (iv) 128° (v) 138°

5. In the given figure, O is the centre of the circle and CF is a diameter. If \angle CFG = 66° and \angle DFE = 39°, find \angle FCE

6. In the given figure, O is the centre of the circle and chord IJ is equal to chord JK and JM is a diameter. If $\angle IMJ = 28^{\circ}$, find $\angle MLK$

(i) 118° (ii) 133° (iii) 148° (iv) 123° (v) 128°

7. In the given figure, O is the centre of the circle and chord IJ is equal to chord JK and JM is a diameter. If \angle MIO = 24° and \angle KLM = 114°, find \angle IJK

(i) 132° (ii) 162° (iii) 147° (iv) 142° (v) 137°

8. In the given figure, O is the centre of the circle , chord IJ is equal to chord JK and HJ is a diameter. If $\angle KHJ = 48^{\circ}$ find $\angle IJK$

9. In the given figure, O is the centre of the circle. If $\angle JOK = 66^{\circ}$ and $\angle KLN = 81^{\circ}$, find $\angle MJO$

10. In the given figure, O is the centre of the circle. If $\angle DOE = 66^{\circ}$ and $\angle EFH = 97^{\circ}$, find $\angle GDO$

11. In the given figure, O is the centre of the circle. If \angle IGH = 62° and \angle EFI = 79°, find \angle GIH

12. In the given figure, O is the centre of the circle. If \angle CDG = 77°, find \angle EFG

14. In the given figure, O is the centre of the circle and HK is a diameter. If $\angle JKG = 90^{\circ}$ and $\angle GHK = 61^{\circ}$, find $\angle HIJ$ K

15. In the given figure, O is the centre of the circle and DG is a diameter. If \angle EFG = 127°, find \angle ECD

(i) 52° (ii) 67° (iii) 47° (iv) 42° (v) 37°

16. In the given figure, O is the centre of the circle and GI is a diameter. If \angle FOI = 99° and \angle OIH = 63°, find \angle GHF + \angle HGI

17. In the given figure, O is the centre of the circle. If $\angle BCD = 126^{\circ}$, find $\angle DOB + \angle BAD$

18. In the given figure, O is the centre of the circle. If \angle DEH = 112° and \angle EFG = 115°, find \angle FIG

(i) 47° (ii) 62° (iii) 57° (iv) 77° (v) 52°

19. In the given figure, O is the centre of the circle . If $\angle ILJ = 77^{\circ}$ and $\angle IHK = 64^{\circ}$, find $\angle HMI$

In the given figure, O is the centre and DH is a diameter of the circle and chord DE is equal to chord GH. If \angle ECG = 38°, find \angle GCH + \angle EFG

21. In the given figure, O is the centre of the circle and CE is the tangent at D. If $\angle DEF = 53^{\circ}, \angle EDF = 30^{\circ}$, find $\angle HDC$

22. In the given figure, O is the centre of the circle. If \angle ECD = 52.5°, find reflex \angle DOB

In the given figure, a pentagon is inscribed in a circle with centre O. Given GH = HI = IJ and $\angle GHI = 118^{\circ}$. Find $\angle GFH$

In the given figure, a pentagon is inscribed in a circle with centre O. Given GH = HI = IJ and $\angle GHI = 112^{\circ}$. Find $\angle GFJ$

(i) 107° (ii) 117° (iii) 102° (iv) 112° (v) 132°

25. In the given figure, a pentagon is inscribed in a circle with centre O. Given IJ = JK = KL and $\angle IJK = 100^{\circ}$. Find $\angle KOL$

10. In the given figure, a hexagon is inscribed in a circle with centre O. Given IJ = JK = KL and $\angle LMN = 122.1^{\circ}$. Find $\angle IMN$

(i) 32.1° (ii) 42.1° (iii) 47.1° (iv) 62.1° (v) 37.1°

In the given figure, a hexagon is inscribed in a circle with centre O. Given HI = IJ = JK and $\angle KLM = 138.16^{\circ}$. Find $\angle MHI$

(i) 106.84° (ii) 131.84° (iii) 101.84° (iv) 116.84° (v) 111.84°

In the given figure, a pentagon is inscribed in a circle with centre O. Given AB = BC = CD , \angle BCD = 112° and \angle EAB = 116°. Find \angle ABC

(i) 127° (ii) 112° (iii) 117° (iv) 122° (v) 142°

29. In the given figure, a pentagon is inscribed in a circle with centre O. Given AB = BC = CD , \angle BCD = 104° and \angle EAB = 115°. Find \angle CDE

30. In the given figure, a pentagon is inscribed in a circle with centre O. Given AB = BC = CD , \angle BCD = 115° and \angle EAB = 113°. Find \angle AED

(i) 102.5° (ii) 97.5° (iii) 127.5° (iv) 112.5° (v) 107.5°

31. In the given figure, a pentagon is inscribed in a circle with centre O. Given AB = BC = CD , \angle BCD = 116° and \angle EAB = 107°. Find \angle EAD

In the given figure, O is the centre of the circle. BC is a diameter of the circle and DE is equal to radius. Find $\angle BFC$

(i) 75° (ii) 70° (iii) 90° (iv) 65° (v) 60°

33. In the given figure, O is the centre of the circle. If \angle FIG = 83° and \angle FEH = 57°, find \angle EHG

34. Which of the following statements are true?

- a) If a rhombus is cyclic, it is a square.
- b) If a trapezium is cyclic, it is a rectangle.
- c) A cyclic quadrilateral is a regular polygon.
- d) If a parallelogram is cyclic, it is a rectangle.
- e) If a kite is cyclic, it is a square.

(i) {b,a} (ii) {a,d} (iii) {e,b,a} (iv) {c,d,a} (v) {c,d}

35. Which of the following are cyclic quadrilaterals?

- a) rectangle
- b) rhombus
- c) square
- d) trapezium
- e) triangle
- f) parallelogram
- (i) {d,c} (ii) {e,f,a} (iii) {a,c} (iv) {b,a} (v) {b,c,a}

36. Which of the following statements are true?

a) It is always possible to inscribe a circle in a regular polygon.

- b) If a circle can be inscribed in a quadrilateral, the sum of the lengths of a pair of opposite sides is equal to the other pair.
- c) If a circle can be inscribed in a quadrilateral, then it must be a square.
- d) It is always possible to inscribe a circle in a quadrilateral.
- e) If a circle can be inscribed in a quadrilateral, it must be a kite.

(i) {a,b} (ii) {d,b} (iii) {c,a} (iv) {e,c,a} (v) {d,b,a}

- 37. Which of the following statements are true?
 - a) Angles in the opposite segments are complementary.
 - b) Angles in the opposite segments are supplementary.
 - c) Angles subtended by equal length arcs in two circles are equal.
 - d) Angles in the same segment are equal.
 - (i) {b,d} (ii) {a,b} (iii) {a,c,b} (iv) {a,d,b} (v) {c,d}
- 38. The opposite angles in a cyclic quadrilateral are
 - (i) supplementary (ii) linear pair (iii) complementary (iv) equal
- 39. In the given figure, O is the centre of the circle. If $\angle BCO = 27^{\circ}$ and $\angle OEB = 31^{\circ}$, find $\angle CDE$

(i) 137° (ii) 127° (iii) 152° (iv) 122° (v) 132°

40. In the given figure, O is the centre of the circle. If $\angle BCO = 47^{\circ}$ and $\angle OEB = 9^{\circ}$, find $\angle COE$

(i) 112° (ii) 142° (iii) 122° (iv) 117° (v) 127°

41. In the given figure, ABCD is a cyclic quadrilateral. If $\angle ACB = 37^{\circ}$ and $\angle CDB = 40^{\circ}$, find $\angle ABC$

43. In the given figure, HIJKLM is a regular hexagon. Find \angle HJI

- (i) 45° (ii) 40° (iii) 30° (iv) 60° (v) 35°
- 44. In the given figure, EFGHIJ is a regular hexagon. Find \angle EHG

(i) 75° (ii) 65° (iii) 70° (iv) 90° (v) 60°

45. In the given figure, FGHI is a cyclic quadrilateral. If \angle FGI = 68° and \angle GHF = 47°, find \angle GHI

(i) 130° (ii) 145° (iii) 115° (iv) 120° (v) 125°

46. In the given figure, \angle IKL = 14° and \angle IML = 20°, find \angle KIL

(i) 86° (ii) 71° (iii) 56° (iv) 66° (v) 61°

- (i) 89° (ii) 79° (iii) 94° (iv) 109° (v) 84°
- In the given figure, HI , IJ , JK and KL are chords and HK , IL are diameters passing through the centre O. If \angle HOI = 60°. Find \angle IJK

(i) 150° (ii) 130° (iii) 125° (iv) 120° (v) 135°

- 49. In the given figure, EFGHIJ is a regular hexagon inscribed in a circle with centre O. Which of the following are true?
 - a) ∠EOJ = 60°
 - b) $\angle EGF = 60^{\circ}$
 - c) ∠JHG = 90°
 - c/ Zjilo = 50
 - d) $\angle FIG = 30^{\circ}$
 - e) $\angle FOH = 120^{\circ}$

50. In the given figure, JKLMN is a regular pentagon . Find \angle JNL M N N L (i) 87° (ii) 72° (iii) 77° (iv) 82° (v) 102°

51. In the given figure, BD is a chord which is equal to the radius of the circle. Find $\angle E$ and $\angle C$

(i) $40^{\circ} \& 140^{\circ}$ (ii) $50^{\circ} \& 130^{\circ}$ (iii) $30^{\circ} \& 150^{\circ}$ (iv) $60^{\circ} \& 120^{\circ}$ (v) $45^{\circ} \& 135^{\circ}$

52. In the given figure, CDEG is a cyclic quadrilateral where DE and DC are produced to F and B respectively. If \angle BCG = 99°, find \angle FEG

53. In the given figure, $\angle D = 49^{\circ}$, $\angle G = 70^{\circ}$ and $\angle H = 112^{\circ}$, find $\angle GEF$

54. Which of the following statements are true?

a) A cyclic parallelogram is a rhombus.

- b) A cyclic kite is a square.
- c) A cyclic parallelogram is a rectangle.
- d) A cyclic trapezium is a rectangle.
- e) A cyclic rhombus is a square.
- (i) $\{d,a,c\}$ (ii) $\{b,e\}$ (iii) $\{c,e\}$ (iv) $\{b,e,c\}$ (v) $\{a,c\}$

55. Which of the following statements are true?

a) All parallelograms are cyclic.

b) A quadrilateral in which the diagonals are equal and bisect each other is cyclic.

- c) An isosceles trapezium is cyclic.
- d) Either pair of opposite angles of a cyclic quadrilateral are supplementary.
- e) The exterior angle of a quadrilateral and its interior opposite angle are supplementary.

(i) $\{a,e,d\}$ (ii) $\{e,c\}$ (iii) $\{a,b\}$ (iv) $\{a,b,c\}$ (v) $\{b,c,d\}$

56. Which of the following are not cyclic quadrilaterals?

- a) rhombus
- b) square
- c) rectangle
- d) isosceles trapezium
- e) kite

(i) {c,e,a} (ii) {c,e} (iii) {d,b,a} (iv) {b,a} (v) {a,e}

- 57. If GHIJ is a cyclic quadrilateral and $\angle G \angle I = 26^{\circ}$, then $\angle I$
 - (i) 87° (ii) 82° (iii) 92° (iv) 77° (v) 107°
- 58. If JKLM is a cyclic parallelogram, then $\angle M$
 - (i) 95° (ii) 120° (iii) 90° (iv) 100° (v) 105°
- 59. CDEFGH is a hexagon inscribed in a circle. Given \angle CDE = 122° & \angle EFG = 131°, find \angle GHC

(i) 112° (ii) 107° (iii) 122° (iv) 117° (v) 137°

60. In the given figure, GHIJ is a parallelogram. The circumcircle of \triangle GHI cuts IJ at K. Given \angle GJK = 76°, find \angle JGK

61. In the given figure, GE and HD are two lines passing through the points of intersection of the two circles at F and C. If \angle HGF = 85°, find \angle FED

(i) 110° (ii) 105° (iii) 100° (iv) 95° (v) 125°

62. In the given figure, find the angles of the quadrilateral.

- (i) $H = 72^{\circ}, I = 90^{\circ}, J = 108^{\circ}, K = 90^{\circ}$ (ii) $H = 74^{\circ}, I = 90^{\circ}, J = 106^{\circ}, K = 90^{\circ}$ (iii) $H = 76^{\circ}, I = 90^{\circ}, J = 104^{\circ}, K = 90^{\circ}$
- (iv) $H = 75^{\circ}, I = 90^{\circ}, J = 105^{\circ}, K = 90^{\circ}$ (v) $H = 73^{\circ}, I = 90^{\circ}, J = 107^{\circ}, K = 90^{\circ}$

63. In the given figure, find the remaining angles of the quadrilateral.

(i) $C=101^{\circ}, F=86^{\circ}$ (ii) $C=98^{\circ}, F=83^{\circ}$ (iii) $C=100^{\circ}, F=85^{\circ}$ (iv) $C=99^{\circ}, F=84^{\circ}$ (v) $C=97^{\circ}, F=82^{\circ}$

64. In the given figure, $\angle OIF = 43^{\circ} \& \angle HGF = 38^{\circ}$, find $\angle OJI$

(i) 38° (ii) 33° (iii) 58° (iv) 43° (v) 28°

Assignment Key					
1) (iii)	2) (v)	3) (i)	4) (v)	5) (iv)	6) (i)
7) (i)	8) (iii)	9) (ii)	10) (v)	11) (v)	12) (iv)
13) (iii)	14) (i)	15) (v)	16) (iv)	17) (ii)	18) (i)
19) (i)	20) (v)	21) (iv)	22) (i)	23) (iii)	24) (iii)
25) (i)	26) (i)	27) (iii)	28) (ii)	29) (iii)	30) (ii)
31) (ii)	32) (v)	33) (i)	34) (ii)	35) (iii)	36) (i)
37) (i)	38) (i)	39) (iv)	40) (i)	41) (iii)	42) (iv)
43) (iii)	44) (v)	45) (iii)	46) (iii)	47) (ii)	48) (iv)
49) (ii)	50) (ii)	51) (iii)	52) (iii)	53) (ii)	54) (iii)
55) (v)	56) (v)	57) (iv)	58) (iii)	59) (ii)	60) (iv)
61) (iv)	62) (ii)	63) (iv)	64) (v)		

Copyright © Small Systems Computing Pvt. Ltd.