EduSahara™ Assignment
Name : Problems on Proportionality
Chapter : Similarity
Grade : ICSE Grade IX
License : Non Commercial Use
Question 1
1.
    • In the given figure,
    •  
    • FG
    • DE
    • .
    • If
    •  
    • CF

      FD
    • =
    • 3

      5
    • and
    • CE
    • =
    • 15.8 cm
    • , find
    • CG
  • (i)
    6.93 cm
  • (ii)
    7.93 cm
  • (iii)
    5.93 cm
  • (iv)
    4.93 cm
  • (v)
    3.93 cm
Question 2
2.
    • In the given figure,
    •  
    • HI
    • FG
    • .
    • If
    •  
    • EH
    • =
    • 8.34 cm
    • ,
    • EF
    • =
    • 13.9 cm
    • and
    • EG
    • =
    • 13.3 cm
    • , find
    • EI
  • (i)
    7.98 cm
  • (ii)
    6.98 cm
  • (iii)
    8.98 cm
  • (iv)
    5.98 cm
  • (v)
    9.98 cm
Question 3
3.
In the given figure, RS ∥ GH and FS = 12.6 cm, FH = 21 cm and RS = 15 cm, find GH
  • (i)
    23.0 cm
  • (ii)
    24.0 cm
  • (iii)
    26.0 cm
  • (iv)
    25.0 cm
  • (v)
    27.0 cm
Question 4
4.
In the given figure, △OPQ is isosceles right-angled at P and PR ⟂ QO. ∠Q =
  • (i)
    ∠T
  • (ii)
    ∠S
  • (iii)
    ∠P
  • (iv)
    ∠R
  • (v)
    ∠O
Question 5
5.
In the given figure, △KLM is isosceles right-angled at L and LN ⟂ MK. ∠NKL ≠
  • (i)
    ∠MNL
  • (ii)
    ∠MKL
  • (iii)
    ∠LMN
  • (iv)
    ∠KLN
  • (v)
    ∠NLM
Question 6
6.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • △FEH ∼
  • (i)
    △ACF
  • (ii)
    △ABH
  • (iii)
    △FDA
  • (iv)
    △DAE
  • (v)
    △DCF
Question 7
7.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠HFE  =
  • (i)
    ∠HAB
  • (ii)
    ∠AFD
  • (iii)
    ∠FEH
  • (iv)
    ∠FAC
  • (v)
    ∠FDA
Question 8
8.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠ABH  =
  • (i)
    ∠EHF
  • (ii)
    ∠ACF
  • (iii)
    ∠FEH
  • (iv)
    ∠FDA
  • (v)
    ∠DAF
Question 9
9.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠EHF  =
  • (i)
    ∠DAF
  • (ii)
    ∠CFA
  • (iii)
    ∠BHA
  • (iv)
    ∠AFD
  • (v)
    ∠HFE
Question 10
10.
    • In the given figure, CDEF is a trapezium in which
    • CD ∥ EF
    • and the diagonals
    • DF
    • and
    • CE
    • intersect at
    • G
    • .
    • If
    •  
    • GC
    • =
    • (
      2
      x
      +
      4
      )
    • cm,
    • DG
    • =
    • (
      2
      x
      +
      28
      )
    • cm,
    • GE
    • =
    • (
      x
      +
      17
      )
    • cm and
    • FG
    • =
    • (
      x
      +
      33
      )
    • cm, find the value of x
  • (i)
    (
    43
    ,
    42
    )
  • (ii)
    (
    43
    ,
    43
    )
  • (iii)
    (
    46
    ,
    43
    )
  • (iv)
    (
    44
    ,
    44
    )
  • (v)
    (
    45
    ,
    45
    )
Question 11
11.
In the given figure, the altitudes UE and FV of △DEF meet at T. ∠FUT  =
  • (i)
    ∠TFU
  • (ii)
    ∠UTF
  • (iii)
    ∠VET
  • (iv)
    ∠TVE
  • (v)
    ∠ETV
Question 12
12.
    • In the given figure, ST ∥ EF , and median DG bisects ST.
    • If  DG = 18 cm, DS = 11.25 cm and DH = 11.25 cm,  DE =
  • (i)
    18.00 cm
  • (ii)
    16.00 cm
  • (iii)
    17.00 cm
  • (iv)
    20.00 cm
  • (v)
    19.00 cm
Question 13
13.
    • In the given figure, ST ∥ HI , and median GJ bisects ST.
    • If  GJ = 14.9 cm, GI = 17 cm and GT = 8.5 cm,  GK =
  • (i)
    9.45 cm
  • (ii)
    5.45 cm
  • (iii)
    6.45 cm
  • (iv)
    8.45 cm
  • (v)
    7.45 cm
Question 14
14.
In the given figure, △NOP is a triangle in which NQ is the internal bisector of ∠N and PR ∥ QN meeting ON produced at R . ∠NPR =
  • (i)
    ∠OQN
  • (ii)
    ∠NQP
  • (iii)
    ∠PRN
  • (iv)
    ∠QPN
  • (v)
    ∠RNP
Question 15
15.
In the given figure, R and S are points on the sides OP and OQ respectively of △OPQ.For which of the following cases, RS ∥ PQ
a)
OR = 7.6 cm, RP = 11.4 cm, OS = 7.2 cm and SQ = 10.8 cm
b)
OP = 19 cm, RP = 11.4 cm, OS = 9.2 cm and OQ = 18 cm
c)
OP = 19 cm, OR = 9.6 cm, OQ = 18 cm and SQ = 10.8 cm
d)
OP = 19 cm, RP = 11.4 cm, OQ = 18 cm and OS = 7.2 cm
  • (i)
    {a,d}
  • (ii)
    {b,d,a}
  • (iii)
    {b,c,a}
  • (iv)
    {c,d}
  • (v)
    {b,a}
Question 16
16.
In the given figure, the area of the △KLM is x sq.cm. N,O,P are the mid-points of the sides LM , MK and KL respectively. The area of the △NOP is
  • (i)
      • 2

        3
      • of area of △KLM
  • (ii)
      • 1

        4
      • of area of △KLM
  • (iii)
      • 3

        4
      • of area of △KLM
  • (iv)
      • 1

        2
      • of area of △KLM
  • (v)
      • 1

        3
      • of area of △KLM
Question 17
17.
    • In the given figure, the parallelogram KLMN and the triangle △OKL are on the same bases and between the same parallels.
    • The area of the
    • △OKL
    • is x sq.cm. The area of the parallelogram is
  • (i)
      • 5

        4
      • the area of the triangle
  • (ii)
      • 4

        3
      • the area of the triangle
  • (iii)
      • twice
      • the area of the triangle
  • (iv)
      • 3

        2
      • the area of the triangle
  • (v)
      • thrice
      • the area of the triangle
Question 18
18.
If the ratio of the bases of two triangles is K : L and the ratio of the corresponding heights is M : N , the ratio of their areas in the same order is
  • (i)
    KM : LN
  • (ii)
    KL : MN
  • (iii)
    LM : KN
  • (iv)
    MN : KL
  • (v)
    KN : LM
Question 19
19.
In the given △IJK, LM ∥ JK. If  IL : LJ = 7.71 cm : 10.29 cm  and  IK = 17 cm, MK =
  • (i)
    10.71 cm
  • (ii)
    11.71 cm
  • (iii)
    9.71 cm
  • (iv)
    8.71 cm
  • (v)
    7.71 cm
Question 20
20.
In the given figure, given ∠JGH = ∠IGJ, x : y = 8.72 cm : 8.28 cm and p = 20 cm, find q =
  • (i)
    18.00 cm
  • (ii)
    17.00 cm
  • (iii)
    19.00 cm
  • (iv)
    21.00 cm
  • (v)
    20.00 cm
Question 21
21.
In the given figure, given ∠DAB = ∠CAD, p = 7.53 cm, q = 8.47 cm and BC = 16 cm, find BD =
  • (i)
    6.53 cm
  • (ii)
    9.53 cm
  • (iii)
    8.53 cm
  • (iv)
    5.53 cm
  • (v)
    7.53 cm
Question 22
22.
In the given figure, HIJK is a trapezium where OI = 15 cm , OJ = 5 cm and OK = 5 cm . Find OH =
  • (i)
    14 cm
  • (ii)
    16 cm
  • (iii)
    17 cm
  • (iv)
    13 cm
  • (v)
    15 cm
Question 23
23.
In the given figure, ∠KHI = 42.14°, find the value of x =
  • (i)
    46.86°
  • (ii)
    48.86°
  • (iii)
    49.86°
  • (iv)
    47.86°
  • (v)
    45.86°
Question 24
24.
In the given figure, ∠KIJ = 43.62°, find the value of y =
  • (i)
    48.38°
  • (ii)
    47.38°
  • (iii)
    44.38°
  • (iv)
    46.38°
  • (v)
    45.38°
Question 25
25.
In the given figure, △GHI is right-angled at H. Also, HJ ⟂ GI. Which of the following are true?
a)
    • GH
      2
    • =
    • GI
    • .
    • GJ
b)
    • GH
      2
    • =
    • IG
    • .
    • IJ
c)
    • HI
      2
    • =
    • GI
    • .
    • GJ
d)
    • HJ
      2
    • =
    • GJ
    • .
    • JI
e)
    • HI
      2
    • =
    • IG
    • .
    • IJ
  • (i)
    {b,a}
  • (ii)
    {b,a,d}
  • (iii)
    {b,c,e}
  • (iv)
    {a,d,e}
  • (v)
    {c,d}
Question 26
26.
In the given figure, △BCD is right-angled at C. Also, CE ⟂ BD. If  BC = 16 cm, CD = 17 cm, then find CE.
  • (i)
    13.65 cm
  • (ii)
    11.65 cm
  • (iii)
    10.65 cm
  • (iv)
    12.65 cm
  • (v)
    9.65 cm
Question 27
27.
In the given figure, △CDE is right-angled at D. Also, DF ⟂ CE. If  CF = 10.6 cm, DF = 11.96 cm, then find FE.
  • (i)
    13.50 cm
  • (ii)
    11.50 cm
  • (iii)
    12.50 cm
  • (iv)
    15.50 cm
  • (v)
    14.50 cm
Question 28
28.
    • In the given figure, △EFG ∼ △PQR and EF = 12 cm, PQ = 16.8 cm.
    • If the area of the
    • △EFG
    • =
    • 72.31 sq.cm
    • , find the area of the
    • △PQR
  • (i)
    141.72 sq.cm
  • (ii)
    139.72 sq.cm
  • (iii)
    142.72 sq.cm
  • (iv)
    143.72 sq.cm
  • (v)
    140.72 sq.cm
Question 29
29.
    • In the given figure, △EFG ∼ △MNO and FG = 15 cm , NO = 21 cm and
    • EH
    • =
    • 7.33 cm
    • ,
    • find the area of the
    • △MNO
  • (i)
    107.78 sq.cm
  • (ii)
    106.78 sq.cm
  • (iii)
    108.78 sq.cm
  • (iv)
    109.78 sq.cm
  • (v)
    105.78 sq.cm
Question 30
30.
In the given figure, △BCD & △OPQ are similar triangles. If the ratio of the heights BE : OR = 8 : 12, then the ratio of their areas is
  • (i)
    64
    sq.cm
    :
    141
    sq.cm
  • (ii)
    64
    sq.cm
    :
    146
    sq.cm
  • (iii)
    64
    sq.cm
    :
    144
    sq.cm
  • (iv)
    65
    sq.cm
    :
    144
    sq.cm
  • (v)
    63
    sq.cm
    :
    144
    sq.cm
Question 31
31.
In the given figure, points J , K and L are the mid-points of sides HI, IG and GH of △GHI. Which of the following are true?
a)
Area of trapezium HIKL is thrice the area of △GLK
b)
    • Area of
    • △GHI
    • =
    • 1

      3
    • area of
    • △JKL
c)
All four small triangles have equal areas
d)
    • Area of trapezium
    • HIKL
    • is
    • 1

      4
    • the area of
    • △GHI
e)
Area of △GHI = 4 times area of △JKL
  • (i)
    {d,c}
  • (ii)
    {a,c,e}
  • (iii)
    {b,d,e}
  • (iv)
    {b,a,c}
  • (v)
    {b,a}
Question 32
32.
The perimeters of two similar triangles are 35 cm and 17 cm respectively. If one side of the first triangle is 16 cm, find the length of the corresponding side of the second triangle.
  • (i)
    5.77 cm
  • (ii)
    7.77 cm
  • (iii)
    8.77 cm
  • (iv)
    9.77 cm
  • (v)
    6.77 cm
Question 33
33.
In the given figure, D is a point on side BC of △ABC such that ∠CAB = ∠ADC = 102° , ∠DCA = 21°. Find ∠CAD
  • (i)
    55°
  • (ii)
    57°
  • (iii)
    59°
  • (iv)
    58°
  • (v)
    56°
Question 34
34.
EFGH is a square and △EFI is an equilateral triangle. Also, △EGJ is an equilateral triangle. If area of △EFI is 'a' sq.units, then the area of △EGJ is
  • (i)
      • 1

        2



        3
      • a sq.units
  • (ii)
      • 2a sq.units
  • (iii)



      • 3
      • a sq.units
  • (iv)
      • a
        2
      • sq.units
  • (v)
      • 1

        2
      • a sq.units
Question 35
35.
BCDE is a cyclic trapezium. Diagonals CE and BD intersect at F. If EB = 15 cm, find CD
  • (i)
    14 cm
  • (ii)
    13 cm
  • (iii)
    16 cm
  • (iv)
    17 cm
  • (v)
    15 cm
Question 36
36.
    • A vertical stick
    • 13 m
    • long casts a shadow of
    • 12 m
    • long on the ground.
    • At the same time, a tower casts the shadow
    • 96 m
    • long on the ground.
    • Find the height of the tower.
  • (i)
    104 m
  • (ii)
    102 m
  • (iii)
    105 m
  • (iv)
    106 m
  • (v)
    103 m
Question 37
37.
    • In the given figure, △EFG, RS ∥ FG such that
    • area of
    •  
    • △ERS
    • = area of
    •  
    • RSGF
    • . Find
    •  
    • ER

      EF
  • (i)
    1

    2
    4


    2
  • (ii)
    1
  • (iii)
    1

    2



    2
  • (iv)
    1

    2



    5
  • (v)
    1

    2



    1

    2
Question 38
38.
    • In the given figure, △BDC is right-angled at D, DE ⟂ BC.
    • BC
    • = c,
    • DC
    • = a,
    • BD
    • = b and
    • DE
    • = p.
    • Which of the following are true?
a)
    • 1

      a
      2
    • +
    • 1

      b
      2
    • +
    • 1

      c
      2
    • =
    • 1

      p
      2
b)
    • 1

      a
      2
    • +
    • 1

      b
      2
    • =
    • 1

      c
      2
    • +
    • 1

      p
      2
c)
    • a
      2
    • +
    • b
      2
    • =
    • c
      2
d)
    • ab
    • =
    • pc
e)
    • 1

      a
      2
    • +
    • 1

      b
      2
    • =
    • 1

      p
      2
  • (i)
    {a,c}
  • (ii)
    {c,d,e}
  • (iii)
    {b,d}
  • (iv)
    {a,b,e}
  • (v)
    {a,c,d}
Question 39
39.
In an equilateral triangle ABC, the side BC is trisected at D. Then
  • (i)
      • 7 AD
        2
      • =
      • 3 AB
        2
  • (ii)
      • 3 AD
        2
      • =
      • 7 AB
        2
  • (iii)
      • 9 AD
        2
      • =
      • 7 AB
        2
  • (iv)
      • 7 AD
        2
      • =
      • 9 AB
        2
Question 40
40.
In the given figure, ∠MJK = ∠LJM and JM ∥ NL and JK = 17 cm, KM = 8 cm and ML = 9 cm. Find JN
  • (i)
    20.12 cm
  • (ii)
    19.12 cm
  • (iii)
    17.12 cm
  • (iv)
    21.12 cm
  • (v)
    18.12 cm
Question 41
41.
    • In the given figure, MO is the angular bisector of
    • ∠M
    • &
    • ∠O
    • LM
    • =
    • 20 cm
    • ,
    • MN
    • =
    • 20 cm
    • and
    • NO
    • =
    • 17 cm
    • .
    • Find
    • OL
  • (i)
    17.00 cm
  • (ii)
    18.00 cm
  • (iii)
    19.00 cm
  • (iv)
    16.00 cm
  • (v)
    15.00 cm
Question 42
42.
In the given figure, CDE is a triangle and 'O' is a point inside △CDE. The angular bisector of ∠DOC, ∠EOD & ∠COE meet CD, DE & EC at F, G & H respectively . Then
  • (i)
    CF . DG . EH = CD . DE . EC
  • (ii)
    CF . DG . EH = OF . OG . OH
  • (iii)
    CF . DG . EH = FG . GH . HF
  • (iv)
    CF . DG . EH = OC . OD . OE
  • (v)
    CF . DG . EH = FD . GE . HC
Question 43
43.
In the given figure, if A, Q, R, S, T, U are equidistant and RP ∥ UB and AB = 24 cm and AP = 10 cm. Find PB
  • (i)
    13.00 cm
  • (ii)
    14.00 cm
  • (iii)
    15.00 cm
  • (iv)
    16.00 cm
  • (v)
    12.00 cm
Question 44
44.
From the given figure and values, find x
  • (i)
    (
    44
    ,
    41
    )
  • (ii)
    (
    42
    ,
    42
    )
  • (iii)
    (
    41
    ,
    41
    )
  • (iv)
    (
    41
    ,
    40
    )
  • (v)
    (
    43
    ,
    43
    )
Question 45
45.
    • The ratio of the bases of two triangles ABC and DEF is
    • 7
      :
      8
    • .
    • If the triangles are equal in area, then the ratio of their heights is
  • (i)
    8
    :
    8
  • (ii)
    7
    :
    6
  • (iii)
    7
    :
    11
  • (iv)
    8
    :
    7
  • (v)
    6
    :
    8
Question 46
46.
If the measures are as shown in the given figure, find  CD
  • (i)
    26.0 cm
  • (ii)
    27.0 cm
  • (iii)
    25.0 cm
  • (iv)
    23.0 cm
  • (v)
    24.0 cm
Question 47
47.
    • In the given figure, the two circles touch each other internally.
    • Diameter
    • OB
    • passes through the centre of the smaller circle.
    • OX = 9 cm
    • ,
    • OY = 22 cm
    • and radius of the inner circle is
    • 6.1 cm
    • .
    • Find the radius of the outer circle.
  • (i)
    12.91 cm
  • (ii)
    15.91 cm
  • (iii)
    14.91 cm
  • (iv)
    16.91 cm
  • (v)
    13.91 cm
    Assignment Key

  •  1) (iii)
  •  2) (i)
  •  3) (iv)
  •  4) (v)
  •  5) (i)
  •  6) (iii)
  •  7) (ii)
  •  8) (ii)
  •  9) (i)
  •  10) (ii)
  •  11) (iv)
  •  12) (i)
  •  13) (v)
  •  14) (iii)
  •  15) (i)
  •  16) (ii)
  •  17) (iii)
  •  18) (i)
  •  19) (iii)
  •  20) (iii)
  •  21) (v)
  •  22) (v)
  •  23) (iv)
  •  24) (iv)
  •  25) (iv)
  •  26) (ii)
  •  27) (i)
  •  28) (i)
  •  29) (i)
  •  30) (iii)
  •  31) (ii)
  •  32) (ii)
  •  33) (ii)
  •  34) (ii)
  •  35) (v)
  •  36) (i)
  •  37) (iii)
  •  38) (ii)
  •  39) (iii)
  •  40) (ii)
  •  41) (i)
  •  42) (v)
  •  43) (ii)
  •  44) (iii)
  •  45) (iv)
  •  46) (iii)
  •  47) (iii)