EduSahara™ Assignment
Name : Problems on Proportionality
Chapter : Similarity
Grade : ICSE Grade IX
License : Non Commercial Use
Question 1
1.
    • In the given figure,
    •  
    • PQ
    • NO
    • .
    • If
    •  
    • MP

      PN
    • =
    • 2

      3
    • and
    • MO
    • =
    • 11.9 cm
    • , find
    • MQ
  • (i)
    5.76 cm
  • (ii)
    6.76 cm
  • (iii)
    4.76 cm
  • (iv)
    3.76 cm
  • (v)
    2.76 cm
Question 2
2.
    • In the given figure,
    •  
    • OP
    • MN
    • .
    • If
    •  
    • LO
    • =
    • 6.78 cm
    • ,
    • LM
    • =
    • 11.3 cm
    • and
    • LN
    • =
    • 10.3 cm
    • , find
    • LP
  • (i)
    4.18 cm
  • (ii)
    5.18 cm
  • (iii)
    7.18 cm
  • (iv)
    8.18 cm
  • (v)
    6.18 cm
Question 3
3.
In the given figure, RS ∥ FG and ER = 15 cm, EF = 25 cm and RS = 13.2 cm, find FG
  • (i)
    22.0 cm
  • (ii)
    23.0 cm
  • (iii)
    24.0 cm
  • (iv)
    20.0 cm
  • (v)
    21.0 cm
Question 4
4.
In the given figure, △BCD is isosceles right-angled at C and CE ⟂ DB. ∠C =
  • (i)
    ∠D
  • (ii)
    ∠F
  • (iii)
    ∠E
  • (iv)
    ∠B
  • (v)
    ∠G
Question 5
5.
In the given figure, △JKL is isosceles right-angled at K and KM ⟂ LJ. ∠KMJ =
  • (i)
    ∠KLM
  • (ii)
    ∠MJK
  • (iii)
    ∠JKL
  • (iv)
    ∠MKL
  • (v)
    ∠JKM
Question 6
6.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • △ABH ∼
  • (i)
    △FDA
  • (ii)
    △ACF
  • (iii)
    △DAE
  • (iv)
    △FEH
  • (v)
    △DCF
Question 7
7.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠FAC  =
  • (i)
    ∠HFE
  • (ii)
    ∠FDA
  • (iii)
    ∠HAB
  • (iv)
    ∠FEH
  • (v)
    ∠AFD
Question 8
8.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠FDA  =
  • (i)
    ∠DAF
  • (ii)
    ∠ABH
  • (iii)
    ∠EHF
  • (iv)
    ∠FEH
  • (v)
    ∠ACF
Question 9
9.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠BHA  =
  • (i)
    ∠EHF
  • (ii)
    ∠AFD
  • (iii)
    ∠CFA
  • (iv)
    ∠DAF
  • (v)
    ∠HFE
Question 10
10.
    • In the given figure, EFGH is a trapezium in which
    • EF ∥ GH
    • and the diagonals
    • FH
    • and
    • EG
    • intersect at
    • I
    • .
    • If
    •  
    • IE
    • =
    • (
      2
      x
      +
      14
      )
    • cm,
    • FI
    • =
    • (
      3
      x
      +
      6
      )
    • cm,
    • IG
    • =
    • (
      2
      x
      +
      3
      )
    • cm and
    • HI
    • =
    • (
      2
      x
      +
      18
      )
    • cm, find the value of x
  • (i)
    (
    (
    -7

    2
    )
    ,
    26
    )
  • (ii)
    (
    28
    ,
    (
    -7

    2
    )
    )
  • (iii)
    (
    (
    -9

    2
    )
    ,
    26
    )
  • (iv)
    (
    (
    -17

    4
    )
    ,
    27
    )
  • (v)
    (
    (
    -9

    2
    )
    ,
    25
    )
Question 11
11.
In the given figure, the altitudes RJ and KS of △IJK meet at Q. ∠KQJ  =
  • (i)
    ∠QRS
  • (ii)
    ∠SQR
  • (iii)
    ∠QJK
  • (iv)
    ∠RSQ
  • (v)
    ∠JKQ
Question 12
12.
    • In the given figure, TU ∥ DE , and median CF bisects TU.
    • If  CD = 16 cm, CF = 16.1 cm and CT = 8.89 cm,  CG =
  • (i)
    7.94 cm
  • (ii)
    8.94 cm
  • (iii)
    9.94 cm
  • (iv)
    10.94 cm
  • (v)
    6.94 cm
Question 13
13.
    • In the given figure, PQ ∥ HI , and median GJ bisects PQ.
    • If  GJ = 12.6 cm, GK = 7.56 cm and GQ = 9 cm,  GI =
  • (i)
    17.00 cm
  • (ii)
    14.00 cm
  • (iii)
    13.00 cm
  • (iv)
    16.00 cm
  • (v)
    15.00 cm
Question 14
14.
In the given figure, △BCD is a triangle in which BE is the internal bisector of ∠B and DF ∥ EB meeting CB produced at F . ∠BDF =
  • (i)
    ∠EDB
  • (ii)
    ∠DFB
  • (iii)
    ∠CEB
  • (iv)
    ∠FBD
  • (v)
    ∠BED
Question 15
15.
In the given figure, J and K are points on the sides GH and GI respectively of △GHI.For which of the following cases, JK ∥ HI
a)
GH = 15 cm, JH = 8.57 cm, GI = 16 cm and GK = 6.86 cm
b)
GH = 15 cm, GJ = 8.43 cm, GI = 16 cm and KI = 9.14 cm
c)
GH = 15 cm, JH = 8.57 cm, GK = 8.86 cm and GI = 16 cm
d)
GJ = 6.43 cm, JH = 8.57 cm, GK = 6.86 cm and KI = 9.14 cm
  • (i)
    {b,a}
  • (ii)
    {b,c,a}
  • (iii)
    {c,d}
  • (iv)
    {a,d}
  • (v)
    {b,d,a}
Question 16
16.
In the given figure, the area of the △BCD is x sq.cm. E,F,G are the mid-points of the sides CD , DB and BC respectively. The area of the △EFG is
  • (i)
      • 1

        4
      • of area of △BCD
  • (ii)
      • 3

        4
      • of area of △BCD
  • (iii)
      • 2

        3
      • of area of △BCD
  • (iv)
      • 1

        2
      • of area of △BCD
  • (v)
      • 1

        3
      • of area of △BCD
Question 17
17.
    • In the given figure, the parallelogram IJKL and the triangle △MIJ are on the same bases and between the same parallels.
    • The area of the
    • △MIJ
    • is x sq.cm. The area of the parallelogram is
  • (i)
      • thrice
      • the area of the triangle
  • (ii)
      • 5

        4
      • the area of the triangle
  • (iii)
      • twice
      • the area of the triangle
  • (iv)
      • 4

        3
      • the area of the triangle
  • (v)
      • 3

        2
      • the area of the triangle
Question 18
18.
If the ratio of the bases of two triangles is I : J and the ratio of the corresponding heights is K : L , the ratio of their areas in the same order is
  • (i)
    KL : IJ
  • (ii)
    JK : IL
  • (iii)
    IL : JK
  • (iv)
    IK : JL
  • (v)
    IJ : KL
Question 19
19.
In the given △IJK, LM ∥ JK. If  IL : LJ = 6.86 cm : 9.14 cm  and  IK = 18 cm, MK =
  • (i)
    9.29 cm
  • (ii)
    12.29 cm
  • (iii)
    11.29 cm
  • (iv)
    8.29 cm
  • (v)
    10.29 cm
Question 20
20.
In the given figure, given ∠JGH = ∠IGJ, x : y = 8.65 cm : 7.35 cm and p = 20 cm, find q =
  • (i)
    19.00 cm
  • (ii)
    16.00 cm
  • (iii)
    18.00 cm
  • (iv)
    17.00 cm
  • (v)
    15.00 cm
Question 21
21.
In the given figure, given ∠JGH = ∠IGJ, p = 7.31 cm, q = 7.69 cm and HI = 15 cm, find JI =
  • (i)
    7.69 cm
  • (ii)
    6.69 cm
  • (iii)
    9.69 cm
  • (iv)
    5.69 cm
  • (v)
    8.69 cm
Question 22
22.
In the given figure, BCDE is a trapezium where OB = 14 cm , OD = 5 cm and OE = 5 cm . Find OC =
  • (i)
    14 cm
  • (ii)
    12 cm
  • (iii)
    16 cm
  • (iv)
    15 cm
  • (v)
    13 cm
Question 23
23.
In the given figure, ∠DAB = 43.89°, find the value of x =
  • (i)
    48.11°
  • (ii)
    45.11°
  • (iii)
    47.11°
  • (iv)
    44.11°
  • (v)
    46.11°
Question 24
24.
In the given figure, ∠IJK = 36.87°, find the value of y =
  • (i)
    51.13°
  • (ii)
    54.13°
  • (iii)
    53.13°
  • (iv)
    52.13°
  • (v)
    55.13°
Question 25
25.
In the given figure, △CDE is right-angled at D. Also, DF ⟂ CE. Which of the following are true?
a)
    • CD
      2
    • =
    • CE
    • .
    • CF
b)
    • CD
      2
    • =
    • EC
    • .
    • EF
c)
    • DE
      2
    • =
    • CE
    • .
    • CF
d)
    • DE
      2
    • =
    • EC
    • .
    • EF
e)
    • DF
      2
    • =
    • CF
    • .
    • FE
  • (i)
    {a,d,e}
  • (ii)
    {b,a}
  • (iii)
    {b,c,e}
  • (iv)
    {b,a,d}
  • (v)
    {c,d}
Question 26
26.
In the given figure, △CDE is right-angled at D. Also, DF ⟂ CE. If  CD = 19 cm, DE = 17 cm, then find DF.
  • (i)
    11.67 cm
  • (ii)
    13.67 cm
  • (iii)
    10.67 cm
  • (iv)
    12.67 cm
  • (v)
    14.67 cm
Question 27
27.
In the given figure, △FGH is right-angled at G. Also, GI ⟂ FH. If  FI = 14.8 cm, IH = 12.1 cm, then find GI.
  • (i)
    11.38 cm
  • (ii)
    14.38 cm
  • (iii)
    13.38 cm
  • (iv)
    12.38 cm
  • (v)
    15.38 cm
Question 28
28.
    • In the given figure, △ABC ∼ △PQR and AB = 14 cm, PQ = 19.6 cm.
    • If the area of the
    • △ABC
    • =
    • 92.87 sq.cm
    • , find the area of the
    • △PQR
  • (i)
    181.02 sq.cm
  • (ii)
    183.02 sq.cm
  • (iii)
    180.02 sq.cm
  • (iv)
    184.02 sq.cm
  • (v)
    182.02 sq.cm
Question 29
29.
    • In the given figure, △DEF ∼ △OPQ and EF = 15 cm , PQ = 21 cm and
    • OR
    • =
    • 13.72 cm
    • ,
    • find the area of the
    • △DEF
  • (i)
    75.48 sq.cm
  • (ii)
    73.48 sq.cm
  • (iii)
    71.48 sq.cm
  • (iv)
    72.48 sq.cm
  • (v)
    74.48 sq.cm
Question 30
30.
In the given figure, △DEF & △PQR are similar triangles. If the ratio of the heights DG : PS = 10 : 14, then the ratio of their areas is
  • (i)
    100
    sq.cm
    :
    194
    sq.cm
  • (ii)
    99
    sq.cm
    :
    196
    sq.cm
  • (iii)
    100
    sq.cm
    :
    199
    sq.cm
  • (iv)
    101
    sq.cm
    :
    196
    sq.cm
  • (v)
    100
    sq.cm
    :
    196
    sq.cm
Question 31
31.
In the given figure, points P , Q and R are the mid-points of sides NO, OM and MN of △MNO. Which of the following are true?
a)
Area of trapezium NOQR is thrice the area of △MRQ
b)
    • Area of trapezium
    • NOQR
    • is
    • 1

      4
    • the area of
    • △MNO
c)
Area of △MNO = 4 times area of △PQR
d)
All four small triangles have equal areas
e)
    • Area of
    • △MNO
    • =
    • 1

      3
    • area of
    • △PQR
  • (i)
    {b,a,c}
  • (ii)
    {a,c,d}
  • (iii)
    {e,c}
  • (iv)
    {b,a}
  • (v)
    {b,e,d}
Question 32
32.
The perimeters of two similar triangles are 27 cm and 16 cm respectively. If one side of the first triangle is 9 cm, find the length of the corresponding side of the second triangle.
  • (i)
    5.33 cm
  • (ii)
    4.33 cm
  • (iii)
    7.33 cm
  • (iv)
    6.33 cm
  • (v)
    3.33 cm
Question 33
33.
In the given figure, K is a point on side IJ of △HIJ such that ∠JHI = ∠HKJ = 107° , ∠KJH = 21°. Find ∠JHK
  • (i)
    53°
  • (ii)
    52°
  • (iii)
    51°
  • (iv)
    54°
  • (v)
    50°
Question 34
34.
EFGH is a square and △EFI is an equilateral triangle. Also, △EGJ is an equilateral triangle. If area of △EFI is 'a' sq.units, then the area of △EGJ is
  • (i)



      • 3
      • a sq.units
  • (ii)
      • 2a sq.units
  • (iii)
      • 1

        2
      • a sq.units
  • (iv)
      • a
        2
      • sq.units
  • (v)
      • 1

        2



        3
      • a sq.units
Question 35
35.
EFGH is a cyclic trapezium. Diagonals FH and EG intersect at I. If HE = 15 cm, find FG
  • (i)
    16 cm
  • (ii)
    15 cm
  • (iii)
    17 cm
  • (iv)
    14 cm
  • (v)
    13 cm
Question 36
36.
    • A vertical stick
    • 14 m
    • long casts a shadow of
    • 15 m
    • long on the ground.
    • At the same time, a tower casts the shadow
    • 120 m
    • long on the ground.
    • Find the height of the tower.
  • (i)
    111 m
  • (ii)
    114 m
  • (iii)
    110 m
  • (iv)
    113 m
  • (v)
    112 m
Question 37
37.
    • In the given figure, △ABC, QR ∥ BC such that
    • area of
    •  
    • △AQR
    • = area of
    •  
    • QRCB
    • . Find
    •  
    • AQ

      AB
  • (i)
    1

    2



    1

    2
  • (ii)
    1

    2
    4


    2
  • (iii)
    1

    2



    2
  • (iv)
    1

    2



    5
  • (v)
    1
Question 38
38.
    • In the given figure, △BDC is right-angled at D, DE ⟂ BC.
    • BC
    • = c,
    • DC
    • = a,
    • BD
    • = b and
    • DE
    • = p.
    • Which of the following are true?
a)
    • 1

      a
      2
    • +
    • 1

      b
      2
    • =
    • 1

      c
      2
    • +
    • 1

      p
      2
b)
    • 1

      a
      2
    • +
    • 1

      b
      2
    • +
    • 1

      c
      2
    • =
    • 1

      p
      2
c)
    • ab
    • =
    • pc
d)
    • a
      2
    • +
    • b
      2
    • =
    • c
      2
e)
    • 1

      a
      2
    • +
    • 1

      b
      2
    • =
    • 1

      p
      2
  • (i)
    {a,c,d}
  • (ii)
    {c,d,e}
  • (iii)
    {b,d}
  • (iv)
    {a,b,e}
  • (v)
    {a,c}
Question 39
39.
In an equilateral triangle ABC, the side BC is trisected at D. Then
  • (i)
      • 9 AD
        2
      • =
      • 7 AB
        2
  • (ii)
      • 7 AD
        2
      • =
      • 9 AB
        2
  • (iii)
      • 3 AD
        2
      • =
      • 7 AB
        2
  • (iv)
      • 7 AD
        2
      • =
      • 3 AB
        2
Question 40
40.
In the given figure, ∠JGH = ∠IGJ and GJ ∥ KI and GH = 18 cm, HJ = 8 cm and JI = 8 cm. Find GK
  • (i)
    17.00 cm
  • (ii)
    18.00 cm
  • (iii)
    19.00 cm
  • (iv)
    20.00 cm
  • (v)
    16.00 cm
Question 41
41.
    • In the given figure, KM is the angular bisector of
    • ∠K
    • &
    • ∠M
    • JK
    • =
    • 20 cm
    • ,
    • KL
    • =
    • 20 cm
    • and
    • LM
    • =
    • 22 cm
    • .
    • Find
    • MJ
  • (i)
    23.00 cm
  • (ii)
    20.00 cm
  • (iii)
    22.00 cm
  • (iv)
    24.00 cm
  • (v)
    21.00 cm
Question 42
42.
In the given figure, BCD is a triangle and 'O' is a point inside △BCD. The angular bisector of ∠COB, ∠DOC & ∠BOD meet BC, CD & DB at E, F & G respectively . Then
  • (i)
    BE . CF . DG = EC . FD . GB
  • (ii)
    BE . CF . DG = OE . OF . OG
  • (iii)
    BE . CF . DG = EF . FG . GE
  • (iv)
    BE . CF . DG = BC . CD . DB
  • (v)
    BE . CF . DG = OB . OC . OD
Question 43
43.
In the given figure, if A, Q, R, S, T, U are equidistant and RP ∥ UB and AB = 21 cm and AP = 8 cm. Find PB
  • (i)
    11.00 cm
  • (ii)
    14.00 cm
  • (iii)
    15.00 cm
  • (iv)
    13.00 cm
  • (v)
    12.00 cm
Question 44
44.
From the given figure and values, find x
  • (i)
    (
    31
    ,
    -6
    )
  • (ii)
    (
    32
    ,
    -7
    )
  • (iii)
    (
    -5
    ,
    32
    )
  • (iv)
    (
    30
    ,
    -8
    )
  • (v)
    (
    30
    ,
    -7
    )
Question 45
45.
    • The ratio of the bases of two triangles ABC and DEF is
    • 4
      :
      5
    • .
    • If the triangles are equal in area, then the ratio of their heights is
  • (i)
    4
    :
    8
  • (ii)
    5
    :
    5
  • (iii)
    5
    :
    4
  • (iv)
    4
    :
    3
  • (v)
    3
    :
    5
Question 46
46.
If the measures are as shown in the given figure, find  DE
  • (i)
    24.0 cm
  • (ii)
    26.0 cm
  • (iii)
    23.0 cm
  • (iv)
    25.0 cm
  • (v)
    27.0 cm
Question 47
47.
    • In the given figure, the two circles touch each other internally.
    • Diameter
    • OB
    • passes through the centre of the smaller circle.
    • OX = 10 cm
    • ,
    • OY = 23 cm
    • and radius of the inner circle is
    • 5.7 cm
    • .
    • Find the radius of the outer circle.
  • (i)
    13.11 cm
  • (ii)
    11.11 cm
  • (iii)
    12.11 cm
  • (iv)
    14.11 cm
  • (v)
    15.11 cm
    Assignment Key

  •  1) (iii)
  •  2) (v)
  •  3) (i)
  •  4) (iii)
  •  5) (iii)
  •  6) (ii)
  •  7) (iii)
  •  8) (iv)
  •  9) (iii)
  •  10) (iii)
  •  11) (ii)
  •  12) (ii)
  •  13) (v)
  •  14) (ii)
  •  15) (iv)
  •  16) (i)
  •  17) (iii)
  •  18) (iv)
  •  19) (v)
  •  20) (iv)
  •  21) (i)
  •  22) (i)
  •  23) (v)
  •  24) (iii)
  •  25) (i)
  •  26) (iv)
  •  27) (iii)
  •  28) (v)
  •  29) (ii)
  •  30) (v)
  •  31) (ii)
  •  32) (i)
  •  33) (ii)
  •  34) (ii)
  •  35) (ii)
  •  36) (v)
  •  37) (iii)
  •  38) (ii)
  •  39) (i)
  •  40) (ii)
  •  41) (iii)
  •  42) (i)
  •  43) (iv)
  •  44) (v)
  •  45) (iii)
  •  46) (iv)
  •  47) (i)