EduSahara™ Assignment
Name : Problems on Proportionality
Chapter : Similarity
Grade : ICSE Grade IX
License : Non Commercial Use
Question 1
1.
    • In the given figure,
    •  
    • NO
    • LM
    • .
    • If
    •  
    • KN

      NL
    • =
    • 4

      3
    • and
    • KM
    • =
    • 13.2 cm
    • , find
    • KO
  • (i)
    8.54 cm
  • (ii)
    7.54 cm
  • (iii)
    9.54 cm
  • (iv)
    6.54 cm
  • (v)
    5.54 cm
Question 2
2.
    • In the given figure,
    •  
    • IJ
    • GH
    • .
    • If
    •  
    • FI
    • =
    • 6.75 cm
    • ,
    • FG
    • =
    • 13.5 cm
    • and
    • FH
    • =
    • 10.8 cm
    • , find
    • FJ
  • (i)
    7.40 cm
  • (ii)
    4.40 cm
  • (iii)
    3.40 cm
  • (iv)
    5.40 cm
  • (v)
    6.40 cm
Question 3
3.
In the given figure, QR ∥ FG and ER = 14.4 cm, EG = 24 cm and FG = 21 cm, find QR
  • (i)
    12.6 cm
  • (ii)
    11.6 cm
  • (iii)
    10.6 cm
  • (iv)
    13.6 cm
  • (v)
    14.6 cm
Question 4
4.
In the given figure, △DEF is isosceles right-angled at E and EG ⟂ FD. ∠D =
  • (i)
    ∠I
  • (ii)
    ∠E
  • (iii)
    ∠H
  • (iv)
    ∠F
  • (v)
    ∠G
Question 5
5.
In the given figure, △EFG is isosceles right-angled at F and FH ⟂ GE. ∠FGH ≠
  • (i)
    ∠HFG
  • (ii)
    ∠EFH
  • (iii)
    ∠HEF
  • (iv)
    ∠GHF
  • (v)
    ∠GEF
Question 6
6.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • △ACF ∼
  • (i)
    △ABH
  • (ii)
    △FEH
  • (iii)
    △DCF
  • (iv)
    △FDA
  • (v)
    △DAE
Question 7
7.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠HAB  =
  • (i)
    ∠HFE
  • (ii)
    ∠FEH
  • (iii)
    ∠FAC
  • (iv)
    ∠FDA
  • (v)
    ∠AFD
Question 8
8.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠FEH  =
  • (i)
    ∠DAF
  • (ii)
    ∠ACF
  • (iii)
    ∠EHF
  • (iv)
    ∠ABH
  • (v)
    ∠FDA
Question 9
9.
    • In the given figure, three lines l , m and n are such that l ∥ m ∥ n.
    • Two transversals PQ and RS intersect them at the points A , B , C and D , E , F respectively.
    • ∠BHA  =
  • (i)
    ∠CFA
  • (ii)
    ∠EHF
  • (iii)
    ∠DAF
  • (iv)
    ∠HFE
  • (v)
    ∠AFD
Question 10
10.
    • In the given figure, MNOP is a trapezium in which
    • MN ∥ OP
    • and the diagonals
    • NP
    • and
    • MO
    • intersect at
    • Q
    • .
    • If
    •  
    • QM
    • =
    • (
      2
      x
      +
      2
      )
    • cm,
    • NQ
    • =
    • (
      x
      +
      37
      )
    • cm,
    • QO
    • =
    • (
      x
      +
      21
      )
    • cm and
    • PQ
    • =
    • (
      x
      +
      18
      )
    • cm, find the value of x
  • (i)
    (
    -19
    ,
    39
    )
  • (ii)
    (
    -16
    ,
    39
    )
  • (iii)
    (
    41
    ,
    -17
    )
  • (iv)
    (
    -19
    ,
    38
    )
  • (v)
    (
    -18
    ,
    40
    )
Question 11
11.
In the given figure, the altitudes UC and DV of △BCD meet at T. ∠VCT  =
  • (i)
    ∠UTD
  • (ii)
    ∠CTV
  • (iii)
    ∠DUT
  • (iv)
    ∠TDU
  • (v)
    ∠TVC
Question 12
12.
    • In the given figure, TU ∥ FG , and median EH bisects TU.
    • If  EF = 15 cm, ET = 7.5 cm and EI = 7.5 cm,  EH =
  • (i)
    13.00 cm
  • (ii)
    14.00 cm
  • (iii)
    15.00 cm
  • (iv)
    16.00 cm
  • (v)
    17.00 cm
Question 13
13.
    • In the given figure, RS ∥ HI , and median GJ bisects RS.
    • If  GJ = 15.7 cm, GI = 20 cm and GS = 11.43 cm,  GK =
  • (i)
    6.97 cm
  • (ii)
    8.97 cm
  • (iii)
    10.97 cm
  • (iv)
    9.97 cm
  • (v)
    7.97 cm
Question 14
14.
In the given figure, △KLM is a triangle in which KN is the internal bisector of ∠K and MO ∥ NK meeting LK produced at O . ∠MKN =
  • (i)
    ∠KMO
  • (ii)
    ∠NMK
  • (iii)
    ∠OKM
  • (iv)
    ∠KNM
  • (v)
    ∠LNK
Question 15
15.
In the given figure, L and M are points on the sides IJ and IK respectively of △IJK.For which of the following cases, LM ∥ JK
a)
IJ = 19 cm, IL = 13.4 cm, IK = 16 cm and MK = 6.4 cm
b)
IJ = 19 cm, LJ = 7.6 cm, IM = 11.6 cm and IK = 16 cm
c)
IL = 11.4 cm, LJ = 7.6 cm, IM = 9.6 cm and MK = 6.4 cm
d)
IJ = 19 cm, LJ = 7.6 cm, IK = 16 cm and IM = 9.6 cm
  • (i)
    {c,d}
  • (ii)
    {a,c}
  • (iii)
    {b,d}
  • (iv)
    {a,d,c}
  • (v)
    {a,b,c}
Question 16
16.
In the given figure, the area of the △HIJ is x sq.cm. K,L,M are the mid-points of the sides IJ , JH and HI respectively. The area of the △KLM is
  • (i)
      • 1

        4
      • of area of △HIJ
  • (ii)
      • 3

        4
      • of area of △HIJ
  • (iii)
      • 1

        2
      • of area of △HIJ
  • (iv)
      • 2

        3
      • of area of △HIJ
  • (v)
      • 1

        3
      • of area of △HIJ
Question 17
17.
    • In the given figure, the parallelogram JKLM and the triangle △NJK are on the same bases and between the same parallels.
    • The area of the
    • △NJK
    • is x sq.cm. The area of the parallelogram is
  • (i)
      • 5

        4
      • the area of the triangle
  • (ii)
      • twice
      • the area of the triangle
  • (iii)
      • 4

        3
      • the area of the triangle
  • (iv)
      • thrice
      • the area of the triangle
  • (v)
      • 3

        2
      • the area of the triangle
Question 18
18.
If the ratio of the bases of two triangles is B : C and the ratio of the corresponding heights is D : E , the ratio of their areas in the same order is
  • (i)
    CD : BE
  • (ii)
    BE : CD
  • (iii)
    BC : DE
  • (iv)
    DE : BC
  • (v)
    BD : CE
Question 19
19.
In the given △DEF, GH ∥ EF. If  DG : GE = 10.36 cm : 8.64 cm  and  DF = 18 cm, HF =
  • (i)
    8.18 cm
  • (ii)
    10.18 cm
  • (iii)
    6.18 cm
  • (iv)
    9.18 cm
  • (v)
    7.18 cm
Question 20
20.
In the given figure, given ∠HEF = ∠GEH, x : y = 8.5 cm : 8.5 cm and q = 20 cm, find p =
  • (i)
    18.00 cm
  • (ii)
    21.00 cm
  • (iii)
    22.00 cm
  • (iv)
    19.00 cm
  • (v)
    20.00 cm
Question 21
21.
In the given figure, given ∠HEF = ∠GEH, p = 7.5 cm, q = 7.5 cm and FG = 15 cm, find HG =
  • (i)
    9.50 cm
  • (ii)
    7.50 cm
  • (iii)
    6.50 cm
  • (iv)
    5.50 cm
  • (v)
    8.50 cm
Question 22
22.
In the given figure, HIJK is a trapezium where OH = 14 cm , OI = 14 cm and OK = 5 cm . Find OJ =
  • (i)
    7 cm
  • (ii)
    3 cm
  • (iii)
    5 cm
  • (iv)
    6 cm
  • (v)
    4 cm
Question 23
23.
In the given figure, ∠LIJ = 41.98°, find the value of x =
  • (i)
    50.02°
  • (ii)
    49.02°
  • (iii)
    46.02°
  • (iv)
    48.02°
  • (v)
    47.02°
Question 24
24.
In the given figure, ∠EFG = 46.59°, find the value of y =
  • (i)
    44.41°
  • (ii)
    42.41°
  • (iii)
    43.41°
  • (iv)
    45.41°
  • (v)
    41.41°
Question 25
25.
In the given figure, △CDE is right-angled at D. Also, DF ⟂ CE. Which of the following are true?
a)
    • CD
      2
    • =
    • EC
    • .
    • EF
b)
    • DE
      2
    • =
    • EC
    • .
    • EF
c)
    • CD
      2
    • =
    • CE
    • .
    • CF
d)
    • DE
      2
    • =
    • CE
    • .
    • CF
e)
    • DF
      2
    • =
    • CF
    • .
    • FE
  • (i)
    {a,b}
  • (ii)
    {a,b,c}
  • (iii)
    {d,c}
  • (iv)
    {b,c,e}
  • (v)
    {a,d,e}
Question 26
26.
In the given figure, △ABC is right-angled at B. Also, BD ⟂ AC. If  AB = 20 cm, BC = 18 cm, then find BD.
  • (i)
    11.38 cm
  • (ii)
    13.38 cm
  • (iii)
    14.38 cm
  • (iv)
    15.38 cm
  • (v)
    12.38 cm
Question 27
27.
In the given figure, △GHI is right-angled at H. Also, HJ ⟂ GI. If  JI = 10 cm, HJ = 12.49 cm, then find GJ.
  • (i)
    17.60 cm
  • (ii)
    16.60 cm
  • (iii)
    13.60 cm
  • (iv)
    15.60 cm
  • (v)
    14.60 cm
Question 28
28.
    • In the given figure, △EFG ∼ △PQR and EF = 10 cm, PQ = 14 cm.
    • If the area of the
    • △PQR
    • =
    • 94.08 sq.cm
    • , find the area of the
    • △EFG
  • (i)
    50.00 sq.cm
  • (ii)
    46.00 sq.cm
  • (iii)
    49.00 sq.cm
  • (iv)
    48.00 sq.cm
  • (v)
    47.00 sq.cm
Question 29
29.
    • In the given figure, △CDE ∼ △NOP and DE = 10 cm , OP = 14 cm and
    • CF
    • =
    • 14.14 cm
    • ,
    • find the area of the
    • △NOP
  • (i)
    139.59 sq.cm
  • (ii)
    138.59 sq.cm
  • (iii)
    140.59 sq.cm
  • (iv)
    137.59 sq.cm
  • (v)
    136.59 sq.cm
Question 30
30.
In the given figure, △BCD & △QRS are similar triangles. If the ratio of the heights BE : QT = 11 : 15, then the ratio of their areas is
  • (i)
    121
    sq.cm
    :
    223
    sq.cm
  • (ii)
    121
    sq.cm
    :
    227
    sq.cm
  • (iii)
    120
    sq.cm
    :
    225
    sq.cm
  • (iv)
    122
    sq.cm
    :
    225
    sq.cm
  • (v)
    121
    sq.cm
    :
    225
    sq.cm
Question 31
31.
In the given figure, points H , I and J are the mid-points of sides FG, GE and EF of △EFG. Which of the following are true?
a)
Area of trapezium FGIJ is thrice the area of △EJI
b)
    • Area of
    • △EFG
    • =
    • 1

      3
    • area of
    • △HIJ
c)
All four small triangles have equal areas
d)
    • Area of trapezium
    • FGIJ
    • is
    • 1

      4
    • the area of
    • △EFG
e)
Area of △EFG = 4 times area of △HIJ
  • (i)
    {b,a,c}
  • (ii)
    {d,c}
  • (iii)
    {a,c,e}
  • (iv)
    {b,d,e}
  • (v)
    {b,a}
Question 32
32.
The perimeters of two similar triangles are 26 cm and 17 cm respectively. If one side of the first triangle is 13 cm, find the length of the corresponding side of the second triangle.
  • (i)
    8.50 cm
  • (ii)
    10.50 cm
  • (iii)
    6.50 cm
  • (iv)
    9.50 cm
  • (v)
    7.50 cm
Question 33
33.
In the given figure, K is a point on side IJ of △HIJ such that ∠JHI = ∠HKJ = 100° , ∠KJH = 30°. Find ∠JHK
  • (i)
    52°
  • (ii)
    50°
  • (iii)
    49°
  • (iv)
    51°
  • (v)
    48°
Question 34
34.
DEFG is a square and △DEH is an equilateral triangle. Also, △DFI is an equilateral triangle. If area of △DEH is 'a' sq.units, then the area of △DFI is
  • (i)
      • 1

        2
      • a sq.units
  • (ii)
      • a
        2
      • sq.units
  • (iii)
      • 2a sq.units
  • (iv)
      • 1

        2



        3
      • a sq.units
  • (v)



      • 3
      • a sq.units
Question 35
35.
DEFG is a cyclic trapezium. Diagonals EG and DF intersect at H. If GD = 6 cm, find EF
  • (i)
    4 cm
  • (ii)
    6 cm
  • (iii)
    5 cm
  • (iv)
    7 cm
  • (v)
    8 cm
Question 36
36.
    • A vertical stick
    • 14 m
    • long casts a shadow of
    • 11 m
    • long on the ground.
    • At the same time, a tower casts the shadow
    • 88 m
    • long on the ground.
    • Find the height of the tower.
  • (i)
    110 m
  • (ii)
    111 m
  • (iii)
    112 m
  • (iv)
    114 m
  • (v)
    113 m
Question 37
37.
    • In the given figure, △ABC, TU ∥ BC such that
    • area of
    •  
    • △ATU
    • = area of
    •  
    • TUCB
    • . Find
    •  
    • AT

      AB
  • (i)
    1
  • (ii)
    1

    2



    5
  • (iii)
    1

    2



    2
  • (iv)
    1

    2
    4


    2
  • (v)
    1

    2



    1

    2
Question 38
38.
    • In the given figure, △ACB is right-angled at C, CD ⟂ AB.
    • AB
    • = c,
    • CB
    • = a,
    • AC
    • = b and
    • CD
    • = p.
    • Which of the following are true?
a)
    • 1

      a
      2
    • +
    • 1

      b
      2
    • =
    • 1

      c
      2
    • +
    • 1

      p
      2
b)
    • a
      2
    • +
    • b
      2
    • =
    • c
      2
c)
    • 1

      a
      2
    • +
    • 1

      b
      2
    • =
    • 1

      p
      2
d)
    • 1

      a
      2
    • +
    • 1

      b
      2
    • +
    • 1

      c
      2
    • =
    • 1

      p
      2
e)
    • ab
    • =
    • pc
  • (i)
    {a,d,e}
  • (ii)
    {d,c}
  • (iii)
    {a,b}
  • (iv)
    {b,c,e}
  • (v)
    {a,b,c}
Question 39
39.
In an equilateral triangle ABC, the side BC is trisected at D. Then
  • (i)
      • 7 AD
        2
      • =
      • 9 AB
        2
  • (ii)
      • 9 AD
        2
      • =
      • 7 AB
        2
  • (iii)
      • 7 AD
        2
      • =
      • 3 AB
        2
  • (iv)
      • 3 AD
        2
      • =
      • 7 AB
        2
Question 40
40.
In the given figure, ∠KHI = ∠JHK and HK ∥ LJ and HI = 19 cm, IK = 11 cm and KJ = 9 cm. Find HL
  • (i)
    13.55 cm
  • (ii)
    16.55 cm
  • (iii)
    14.55 cm
  • (iv)
    15.55 cm
  • (v)
    17.55 cm
Question 41
41.
    • In the given figure, MO is the angular bisector of
    • ∠M
    • &
    • ∠O
    • LM
    • =
    • 20 cm
    • ,
    • MN
    • =
    • 20 cm
    • and
    • NO
    • =
    • 20 cm
    • .
    • Find
    • OL
  • (i)
    18.00 cm
  • (ii)
    22.00 cm
  • (iii)
    19.00 cm
  • (iv)
    20.00 cm
  • (v)
    21.00 cm
Question 42
42.
In the given figure, EFG is a triangle and 'O' is a point inside △EFG. The angular bisector of ∠FOE, ∠GOF & ∠EOG meet EF, FG & GE at H, I & J respectively . Then
  • (i)
    EH . FI . GJ = HF . IG . JE
  • (ii)
    EH . FI . GJ = OH . OI . OJ
  • (iii)
    EH . FI . GJ = EF . FG . GE
  • (iv)
    EH . FI . GJ = HI . IJ . JH
  • (v)
    EH . FI . GJ = OE . OF . OG
Question 43
43.
In the given figure, if A, Q, R, S, T, U are equidistant and RP ∥ UB and AB = 22 cm. Find AP
  • (i)
    9.80 cm
  • (ii)
    10.80 cm
  • (iii)
    7.80 cm
  • (iv)
    6.80 cm
  • (v)
    8.80 cm
Question 44
44.
From the given figure and values, find x
  • (i)
    (
    10
    ,
    -2
    )
  • (ii)
    (
    10
    ,
    -1
    )
  • (iii)
    (
    12
    ,
    -1
    )
  • (iv)
    (
    1
    ,
    12
    )
  • (v)
    (
    11
    ,
    0
    )
Question 45
45.
    • The ratio of the bases of two triangles ABC and DEF is
    • 6
      :
      4
    • .
    • If the triangles are equal in area, then the ratio of their heights is
  • (i)
    4
    :
    6
  • (ii)
    6
    :
    7
  • (iii)
    6
    :
    2
  • (iv)
    7
    :
    4
  • (v)
    5
    :
    4
Question 46
46.
If the measures are as shown in the given figure, find  DE
  • (i)
    26.0 cm
  • (ii)
    23.0 cm
  • (iii)
    25.0 cm
  • (iv)
    24.0 cm
  • (v)
    27.0 cm
Question 47
47.
    • In the given figure, the two circles touch each other internally.
    • Diameter
    • OB
    • passes through the centre of the smaller circle.
    • OX = 10 cm
    • ,
    • OY = 22 cm
    • and radius of the inner circle is
    • 5.9 cm
    • .
    • Find the radius of the outer circle.
  • (i)
    10.98 cm
  • (ii)
    13.98 cm
  • (iii)
    11.98 cm
  • (iv)
    12.98 cm
  • (v)
    14.98 cm
    Assignment Key

  •  1) (ii)
  •  2) (iv)
  •  3) (i)
  •  4) (iv)
  •  5) (iv)
  •  6) (i)
  •  7) (iii)
  •  8) (v)
  •  9) (i)
  •  10) (i)
  •  11) (iv)
  •  12) (iii)
  •  13) (ii)
  •  14) (i)
  •  15) (i)
  •  16) (i)
  •  17) (ii)
  •  18) (v)
  •  19) (i)
  •  20) (v)
  •  21) (ii)
  •  22) (iii)
  •  23) (iv)
  •  24) (iii)
  •  25) (iv)
  •  26) (ii)
  •  27) (iv)
  •  28) (iv)
  •  29) (ii)
  •  30) (v)
  •  31) (iii)
  •  32) (i)
  •  33) (ii)
  •  34) (iii)
  •  35) (ii)
  •  36) (iii)
  •  37) (iii)
  •  38) (iv)
  •  39) (ii)
  •  40) (iv)
  •  41) (iv)
  •  42) (i)
  •  43) (v)
  •  44) (ii)
  •  45) (i)
  •  46) (iii)
  •  47) (iv)