ICSE Board Practice

ICSE Grade VIII - Quadratic Equations
Question 1
1.
    • Solve :
    •  
       
      16
      x
      2
         
       
       
      10
      a
      b
      x
        +  
       
       
      a
      2
      b
      2
    • = 0
  •  
     
    2
    a
    b

     
     
    5
    ,
     
     
    a
    b

     
     
    10
  •  
     
    3
    a
    b

     
     
    4
    ,
     
     
    3
    a
    b

     
     
    8
  •  
     
    a
    b

     
     
    4
    ,
     
     
    a
    b

     
     
    8
  •  
     
    4
    a
    b

     
     
    8
    ,
     
     
    a
    b

     
     
    8
  •  
     
    2
    a
    b

     
     
    3
    ,
     
     
    a
    b

     
     
    6
Question 2
2.
    • Find the discriminant of the quadratic equation
    • (
      x
      2
       
      +
      4
      x
      +
      4
      )
      =
      0
  • -1
  • 3
  • -3
  • 0
  • 1
Question 3
3.
    • Find the roots of the quadratic equation
    • (
      x
      2
       
      5
      x
      +
      4
      )
      =
      0
  • (
    4
    ,
    1
    )
  • (
    7
    ,
    -2
    )
  • (
    5
    ,
    0
    )
  • (
    5
    ,
    1
    )
  • (
    7
    ,
    0
    )
Question 4
4.
    • Solve the quadratic equation
    •  
       
      x
        +  
       
       
      4
      =
         
       
       
      3

       
       
      x
  • (
    1
    ,
    -4
    )
  • (
    0
    ,
    -4
    )
  • (
    1
    ,
    -6
    )
  • (
    -1
    ,
    -3
    )
  • (
    0
    ,
    -3
    )
Question 5
5.
    • Find the roots of the quadratic equation
    • (
      40
      x
      2
       
      +
      7
      x
      20
      )
      =
      0
  • (
    5

    8
    ,
    (
    -4

    5
    )
    )
  • (
    7

    8
    ,
    (
    -4

    3
    )
    )
  • (
    1

    2
    ,
    (
    -4

    3
    )
    )
  • (
    1

    2
    ,
    (
    -4

    5
    )
    )
  • (
    7

    8
    ,
    (
    -6

    5
    )
    )
Question 6
6.
    • Find the roots of the quadratic equation
    • (
      24
      x
      2
       
      52
      x
      +
      20
      )
      =
      0
  • (
    7

    5
    ,
    1

    2
    )
  • (
    7

    3
    ,
    (
    -1

    2
    )
    )
  • (
    7

    3
    ,
    1
    )
  • (
    5

    3
    ,
    1

    2
    )
  • (
    7

    5
    ,
    1
    )
Question 7
7.
    • Find the roots of the quadratic equation
    • (
      x
      2
       
      +
      14
      x
      +
      45
      )
      =
      0
  • (
    -4
    ,
    -10
    )
  • (
    -5
    ,
    -9
    )
  • (
    -3
    ,
    -10
    )
  • (
    -3
    ,
    -11
    )
  • (
    -4
    ,
    -9
    )
Question 8
8.
    • Solve :
    • (
      2
      x
      +
      4
      )

      (
      x
      5
      )
    • =
    • (
      8
      x
      +
      3
      )

      (
      x
      +
      10
      )
  • (
    5

    6
    ,
    -11
    )
  • (
    (
    -5

    4
    )
    ,
    10
    )
  • (
    (
    -1

    2
    )
    ,
    14
    )
  • (
    (
    -7

    6
    )
    ,
    8
    )
  • (
    (
    -5

    6
    )
    ,
    11
    )
Question 9
9.
    • Solve :
    •    
       
       
      3

       
       
      (
      x
      +
      2
      )
         
       
       
      4

       
       
      (
      x
      2
      )
      =
         
       
       
      3

       
       
      (
      x
      4
      )
  • (
    3

    2



    5
    +
    1

    10



    265
    )
    ,
    (
    3

    2



    5
    1

    10



    265
    )
  • (
    3

    2



    4
    +
    1

    10



    265
    )
    ,
    (
    3

    2



    4
    1

    10



    265
    )
  • (
    3

    2
    +
    1

    10



    265
    )
    ,
    (
    3

    2
    1

    10



    265
    )
  • (
    3

    2
    +
    1

    10



    795
    )
    ,
    (
    3

    2
    1

    10



    795
    )
  • (
    3

    2
    +
    1

    10



    530
    )
    ,
    (
    3

    2
    1

    10



    530
    )
Question 10
10.
    • Solve :
    •  
       
      5

       
       
      (
      x
      5
      )
         
       
       
      1

       
       
      (
      x
      +
      1
      )
      =
         
       
       
      2
  • 5
    ,
    (
    1
    )
  • 5



    3
    ,
    (



    3
    )
  • 5



    4
    ,
    (



    4
    )
  • 5



    2
    ,
    (



    2
    )
  • 5



    5
    ,
    (



    5
    )