EduSahara™ Worksheet
Name : Chapter Based Worksheet
Chapter : Arthimetic Progressions
Grade : CBSE Grade X
License : Non Commercial Use
Question
1
1.
Find the sum of first 70 natural numbers
(i)
2484
(ii)
2485
(iii)
2488
(iv)
2486
(v)
2483
Question
2
2.
How many terms of the A.P.
5
,
12
,
19
,
. . .
are needed to
make the sum
1292
?
(i)
22
(ii)
18
(iii)
19
(iv)
16
(v)
20
Question
3
3.
The measures of the interior angles of a convex polygon are in A.P.
If the smallest angle is
46
and the largest angle is
134
,
then the number of sides of the polygon is
(i)
2
(ii)
6
(iii)
5
(iv)
3
(v)
4
Question
4
4.
Find
t
22
of the A.P.
1
,
8
,
15
,
. . .
=
(i)
147
(ii)
149
(iii)
146
(iv)
150
(v)
148
Question
5
5.
Given
t
n
=
53
, n =
8
,
S
n
=
228
, find d
(i)
7
(ii)
6
(iii)
8
(iv)
5
(v)
9
Question
6
6.
Which term of the A.P.
2
,
8
,
14
,
. . .
is
110
?
(i)
t
22
(ii)
t
20
(iii)
t
18
(iv)
t
19
(v)
t
16
Question
7
7.
Find
t
8
of the A.P.
6
5
,
47
35
,
52
35
,
. . .
=
(i)
11
7
(ii)
11
3
(iii)
11
5
(iv)
13
5
(v)
9
5
Question
8
8.
Determine
t
5
of an A.P whose
t
18
is
19
and common difference is
1
(i)
7
(ii)
3
(iii)
6
(iv)
9
(v)
5
Question
9
9.
Find the common difference and next four terms of the
following A.P.
6
,
15
,
24
,
. . .
=
(i)
9
;
33
,
42
,
51
,
60
(ii)
10
;
33
,
42
,
51
,
60
(iii)
10
;
30
,
38
,
46
,
54
(iv)
10
;
36
,
46
,
56
,
66
Question
10
10.
If a =
5
and d =
8
, find
t
6
of the A.P.
(i)
47
(ii)
46
(iii)
44
(iv)
45
(v)
43
Question
11
11.
Find
t
n
of the A.P
2
7
,
3
7
,
4
7
,
5
7
,
6
7
,
. . .
(i)
(
1
7
n
+
3
7
)
(ii)
(
22
7
n
+
1
7
)
(iii)
(
1
7
n
+
2
7
)
(iv)
(
1
7
n
+
1
7
)
(v)
(
−
13
7
n
+
1
7
)
Question
12
12.
The
t
18
of an A.P. is
127
and the
t
17
is
120
.
Find
t
7
.
(i)
48
(ii)
50
(iii)
52
(iv)
49
(v)
51
Question
13
13.
Which term of the A.P.
4
3
,
3
2
,
5
3
,
. . .
is
7
2
?
(i)
t
16
(ii)
t
15
(iii)
t
11
(iv)
t
13
(v)
t
14
Question
14
14.
The common difference of the A.P.
7
9
,
8
9
,
1
,
. . .
=
(i)
1
11
(ii)
1
3
(iii)
1
9
(iv)
1
7
(v)
(
-1
9
)
Question
15
15.
Given
t
n
=
17
, d =
3
, n =
5
, find
S
n
(i)
54
(ii)
55
(iii)
52
(iv)
56
(v)
58
Question
16
16.
If a =
5
2
and d =
1
7
, find
t
2
of the A.P.
(i)
5
2
(ii)
39
14
(iii)
37
14
(iv)
37
12
(v)
37
16
Question
17
17.
If x
≠
y and the sequences x ,
a
1
,
a
2
, y and x ,
b
1
,
b
2
, y
each are in A.P., then
a
2
−
a
1
b
2
−
b
1
=
(i)
1
(ii)
(
-3
4
)
(iii)
2
3
(iv)
4
3
(v)
3
2
Question
18
18.
Given a =
7
, d =
2
,
S
n
=
315
, find n
(i)
13
(ii)
16
(iii)
15
(iv)
14
(v)
18
Question
19
19.
If
S
90
and
S
70
of an A.P. are
8460
and
5180
respectively, then
S
160
=
(i)
26237
(ii)
26241
(iii)
26240
(iv)
26243
Question
20
20.
Find
t
n
of the A.P
9
,
17
,
25
,
33
,
41
,
. . .
(i)
(
8
n
+
1
)
(ii)
(
8
n
+
10
)
(iii)
(
8
n
+
9
)
(iv)
(
11
n
+
1
)
(v)
(
7
n
+
1
)
Question
21
21.
Given a =
2
, d =
8
,
S
n
=
240
, find
t
n
(i)
58
(ii)
59
(iii)
61
(iv)
57
(v)
55
Question
22
22.
Determine k so that
(
7
k
+
7
)
,
(
9
k
+
7
)
and
(
9
k
+
9
)
are the consecutive terms of an A.P
(i)
3
(ii)
-2
(iii)
1
(iv)
0
(v)
2
Question
23
23.
How many terms of the A.P.
7
3
,
5
2
,
8
3
,
. . .
are needed to
make the sum
209
6
?
(i)
12
(ii)
13
(iii)
8
(iv)
11
(v)
10
Question
24
24.
Given
t
n
=
56
, d =
3
, n =
17
, find a
(i)
11
(ii)
7
(iii)
5
(iv)
9
(v)
8
Question
25
25.
Determine
t
7
and
t
n
of an A.P. whose
t
8
is
60
and
t
9
is
68
.
(i)
51
;
(
8
n
+
4
)
(ii)
53
;
8
n
(iii)
54
;
(
12
n
−
4
)
(iv)
50
;
(
5
n
−
4
)
(v)
52
;
(
8
n
−
4
)
Assignment Key
1) (ii)
2) (iii)
3) (v)
4) (v)
5) (i)
6) (iv)
7) (iii)
8) (iii)
9) (i)
10) (iv)
11) (iv)
12) (ii)
13) (v)
14) (iii)
15) (ii)
16) (iii)
17) (i)
18) (iii)
19) (iii)
20) (i)
21) (i)
22) (iii)
23) (iv)
24) (v)
25) (v)