

1. In the given figure, $\triangle BCD$ is an acute angled triangle and $BE \perp CD$. Then

(i) $BD^2 = BC^2 + CD^2 - 2BC \cdot CD$ (ii) $BD^2 = BC^2 + CD^2 + 2BC \cdot CD$ (iii) $BD^2 = BC^2 + CD^2 - 2CD \cdot CE$
(iv) $BD^2 = BC^2 + CD^2 + 2CD \cdot CE$ (v) $BD^2 = BC^2 + CD^2 - BE^2$

2. The ratio of the bases of two triangles ABC and DEF is 4:6 .

If the triangles are equal in area, then the ratio of their heights is

(i) 4:4 (ii) 6:4 (iii) 5:6 (iv) 3:6 (v) 4:9

3. Which of the following are necessary conditions for similarity of two polygons ?

a) The corresponding angles are proportional.
b) The corresponding sides are proportional.
c) The corresponding sides are equal.
d) The corresponding angles are equal.

(i) {a,c,b} (ii) {a,b} (iii) {a,d,b} (iv) {b,d} (v) {c,d}

4. Which of the following are true?

a) A circle is a polygonal region.
b) A semi-circle is a polygonal region.
c) A square is a polygonal region.
d) A sector is a polygonal region.
e) A triangle is a polygonal region.

(i) {b,e} (ii) {d,a,c} (iii) {a,c} (iv) {b,e,c} (v) {c,e}

5. In the given figure, the altitudes OJ and KP of $\triangle IJK$ meet at N. $\triangle PJK \sim$

(i) $\triangle OKN$ (ii) $\triangle NPO$ (iii) $\triangle OKJ$ (iv) $\triangle PJK$ (v) $\triangle NJK$

6. In the given figure, $\triangle BCD$ is right-angled at C. Also, $CE \perp BD$. If $CD = 19$ cm, $CE = 13.07$ cm, then find BC.

(i) 19.00 cm (ii) 16.00 cm (iii) 18.00 cm (iv) 17.00 cm (v) 20.00 cm

7. In the given figure, $\triangle BCD$ is an obtuse angled triangle and $BE \perp CD$. Then

(i) $BD^2 = BC^2 + CD^2 + 2CD \cdot CE$ (ii) $BD^2 = BC^2 + CD^2 + 2BC \cdot CD$ (iii) $BD^2 = BC^2 + CD^2 + 2CE \cdot DE$
 (iv) $BD^2 = BC^2 + CD^2 - 2CD \cdot CE$ (v) $BD^2 = BC^2 + CD^2 + CE^2$

8. In the given figure, in $\triangle FGH$, 'O' is a point inside the triangle. $OI \perp GH$, $OJ \perp FH$ and $OK \perp FG$. Then

(i) $FK^2 + GI^2 + HJ^2 = OK \cdot OI + OI \cdot OJ + OJ \cdot OK$ (ii) $FK^2 + GI^2 + HJ^2 = OF \cdot OG + OG \cdot OH + OH \cdot OF$
 (iii) $FK^2 + GI^2 + HJ^2 = FJ^2 + HI^2 + GK^2$ (iv) $FK^2 + GI^2 + HJ^2 = OI^2 + OJ^2 + OK^2$

9. In the given figure, $ST \parallel FG$ and $ES = 15 \text{ cm}$, $ST = 13.8 \text{ cm}$ and $FG = 23 \text{ cm}$, find EF

(i) 27.0 cm (ii) 25.0 cm (iii) 24.0 cm (iv) 26.0 cm (v) 23.0 cm

10. In the given figure, $\triangle BCD$, $BE \perp CD$. Which of the following are true?

- a) $BC^2 + CE^2 = BD^2 + DE^2$
- b) $BC^2 + BD^2 = CE^2 + DE^2$
- c) $BE^2 = 2CE \cdot DE$
- d) $BC^2 - BD^2 = CE^2 - DE^2$
- e) $BC^2 - CE^2 = BD^2 - DE^2$

(i) {c,a,d} (ii) {a,d} (iii) {b,e} (iv) {b,e,d} (v) {d,e}

11. Which of the following are true?

- a) Any two quadrilaterals are similar if the corresponding sides are proportional.
- b) Any two triangles are similar if the corresponding angles are equal.
- c) Any two triangles are similar if the corresponding sides are proportional.
- d) Any two quadrilaterals are similar if the corresponding angles are equal.

(i) {d,b} (ii) {a,b,c} (iii) {d,a,b} (iv) {d,c} (v) {d,a}

12. In the given figure, given $\angle HEF = \angle GEH$, $x : y = 9.71 \text{ cm} : 7.29 \text{ cm}$ and $p = 20 \text{ cm}$, find $q =$

(i) 17.00 cm (ii) 16.00 cm (iii) 14.00 cm (iv) 15.00 cm (v) 13.00 cm

13. The perimeters of two similar triangles are 34 cm and 18 cm respectively. If one side of the first triangle is 13 cm, find the length of the corresponding side of the second triangle.

(i) 7.88 cm (ii) 8.88 cm (iii) 6.88 cm (iv) 4.88 cm (v) 5.88 cm

14. In the given figure, $\triangle PQR$ is isosceles right-angled at Q and $QS \perp RP$. $\angle PQR =$

(i) $\angle PQS$ (ii) $\angle QRS$ (iii) $\angle RSQ$ (iv) $\angle SPQ$ (v) $\angle SQR$

15. In the given figure, DEFG is a rhombus. Which of the following are true?

a) $DE^2 + EF^2 = DF^2$
b) $DE^2 + EF^2 + FG^2 + DG^2 = DF^2 + EG^2$
c) $2 DE^2 = DF^2 + EG^2$
d) $EF^2 + FG^2 = EG^2$
e) $4 DE^2 = DF^2 + EG^2$

(i) {a,b} (ii) {d,a,b} (iii) {b,e} (iv) {c,e} (v) {c,e,b}

16. In the given figure, points K, L and M are the mid-points of sides IJ, JH and HI of $\triangle HIJ$. Which of the following are true?

- a) $\triangle MIK \sim \triangle HIJ$
- b) $\triangle KLM \sim \triangle HIJ$
- c) $\triangle KML \sim \triangle HIJ$
- d) $\triangle HML \sim \triangle HIJ$
- e) $\triangle LKJ \sim \triangle HIJ$

- (i) {a,b,d,e} (ii) {c,d} (iii) {c,e,a} (iv) {c,b} (v) {c,a}

17. In an equilateral triangle ABC, the side BC is trisected at D. Then

- (i) $7 AD^2 = 9 AB^2$ (ii) $9 AD^2 = 7 AB^2$ (iii) $3 AD^2 = 7 AB^2$ (iv) $7 AD^2 = 3 AB^2$

18. Two poles of heights 7 m and 14 m stand vertically on a plane ground. If the distance between their feet is 15 m, find the distance between their tops

- (i) 14.55 m (ii) 17.55 m (iii) 15.55 m (iv) 16.55 m (v) 18.55 m

19. Identify the property by which the two given triangles are similar

- (i) not similar (ii) AAA Similarity (iii) SSS Similarity (iv) SAS Similarity

20. Which of the following are measures of a right angled triangle?

- (i) $OP = 10 \text{ cm}, PQ = 15 \text{ cm}, QO = 18.03 \text{ cm}$ (ii) $OP = 15 \text{ cm}, PQ = 14 \text{ cm}, QO = 13 \text{ cm}$
- (iii) $OP = 14 \text{ cm}, PQ = 11 \text{ cm}, QO = 13 \text{ cm}$ (iv) $OP = 15 \text{ cm}, PQ = 25 \text{ cm}, QO = 14 \text{ cm}$
- (v) $OP = 10 \text{ cm}, PQ = 10 \text{ cm}, QO = 10 \text{ cm}$

21. In the given figure, if $CD \parallel EF$ then

(i) $\triangle GDC \sim \triangle GFE$ (ii) $\triangle GCD \sim \triangle GEF$ (iii) $\triangle CDG \sim \triangle GFE$ (iv) $\triangle CDG \sim \triangle FEG$ (v) $\triangle CDG \sim \triangle GEF$

22. In the given figure, $\triangle CDE$ is right-angled at D. Also, $DF \perp CE$. Which of the following are true?

a) $DE^2 = EC \cdot EF$
 b) $CD^2 = CE \cdot CF$
 c) $CD^2 = EC \cdot EF$
 d) $DF^2 = CF \cdot FE$
 e) $DE^2 = CE \cdot CF$

(i) {e,b} (ii) {c,e,d} (iii) {c,a} (iv) {c,a,b} (v) {a,b,d}

23. In the given figure, EFG is a triangle and 'O' is a point inside $\triangle EFG$. The angular bisector of $\angle FOE$, $\angle GOF$ & $\angle EOG$ meet EF, FG & GE at H, I & J respectively. Then

(i) $EH \cdot FI \cdot GJ = OH \cdot OI \cdot OJ$ (ii) $EH \cdot FI \cdot GJ = HI \cdot IJ \cdot JH$ (iii) $EH \cdot FI \cdot GJ = EF \cdot FG \cdot GE$
 (iv) $EH \cdot FI \cdot GJ = HF \cdot IG \cdot JE$ (v) $EH \cdot FI \cdot GJ = OE \cdot OF \cdot OG$

24. In the given figure, ABCD is a trapezium where $OA = 15 \text{ cm}$, $OC = 5 \text{ cm}$ and $OD = 5 \text{ cm}$. Find $OB =$

(i) 13 cm (ii) 17 cm (iii) 15 cm (iv) 16 cm (v) 14 cm

25. Which of the following are true?

- a) If two figures are similar, then they are congruent too.
- b) Similar figures have same area.
- c) Congruent figures have same area.
- d) If two figures are congruent, then they are similar too.
- e) Similar and congruent are not synonymous.

(i) {a,b,e} (ii) {a,c,d} (iii) {a,c} (iv) {c,d,e} (v) {b,d}

Assignment Key

1) (iii)	2) (ii)	3) (iv)	4) (v)	5) (i)	6) (iii)
7) (i)	8) (iii)	9) (ii)	10) (v)	11) (ii)	12) (iv)
13) (iii)	14) (iii)	15) (iii)	16) (i)	17) (ii)	18) (iv)
19) (iii)	20) (i)	21) (iv)	22) (v)	23) (iv)	24) (iii)
25) (iv)					