EduSahara™ Worksheet
Name : Chapter Based Worksheet
Chapter : Logarithms
Grade : ICSE Grade IX
License : Non Commercial Use
Question
1
1.
Find the value of
x
if
log
5
x
=
4
(i)
624
(ii)
628
(iii)
626
(iv)
625
(v)
623
Question
2
2.
log
78.0600
+
log
50.0700
=
(i)
log
3906.4641
(ii)
log
3907.4641
(iii)
log
3909.4641
(iv)
log
3908.4641
(v)
log
3910.4641
Question
3
3.
Find the value of
x
if
log
4
64
=
x
(i)
6
(ii)
2
(iii)
3
(iv)
0
(v)
4
Question
4
4.
Express
log
p
2
q
5
in terms of
log
p
and
log
q
(i)
5
log
q
−
2
log
p
(ii)
2
log
p
−
5
log
q
(iii)
2
log
p
+
5
log
q
(iv)
2
5
log
p
log
q
Question
5
5.
log
2401
16807
=
(i)
9.25
(ii)
3.25
(iii)
1.25
(iv)
2.25
(v)
0.25
Question
6
6.
Find the value of
x
if
log
5
(
x
2
−
39
)
=
2
(i)
(
8
,
(
−
8
)
)
(ii)
(
8
,
(
−
7
)
)
(iii)
(
9
,
(
−
8
)
)
(iv)
(
9
,
(
−
7
)
)
Question
7
7.
log
1
5
83
3
=
(i)
3
log
1
5
85
(ii)
2
log
1
5
83
(iii)
3
log
1
5
83
(iv)
4
log
1
5
83
(v)
log
(
-1
5
)
80
3
Question
8
8.
If
log
7
x
=
a
and
log
7
y
=
b
, then
7
(
a
+
1
)
=
(i)
7
y
(ii)
7
b
(iii)
7
(iv)
7
a
(v)
7
x
Question
9
9.
log
63.2200
−
log
93.7600
=
(i)
log
2.6743
(ii)
log
8.6743
(iii)
log
7.6743
(iv)
log
1.6743
(v)
log
0.6743
Question
10
10.
log
2401
49
=
(i)
0.5
(ii)
7.5
(iii)
8.5
(iv)
1.5
(v)
2.5
Question
11
11.
If
(
x
4
+
y
4
)
=
14
x
2
y
2
, then
log
(
x
2
+
y
2
)
=
(i)
log
x
−
log
y
+
log
4
(ii)
log
x
−
log
y
−
log
4
(iii)
log
x
+
log
y
−
log
4
(iv)
log
x
+
log
y
+
log
4
Question
12
12.
The base of
log
4
53
is
(i)
4
(ii)
3
(iii)
53
(iv)
6
(v)
2
Question
13
13.
log
8
9
10
21
=
(i)
log
10
21
✕
log
8
9
(ii)
log
10
21
+
log
8
9
(iii)
log
8
9
÷
log
10
21
(iv)
log
10
21
−
log
8
9
(v)
log
10
21
÷
log
8
9
Question
14
14.
log
1296
216
=
(i)
1.75
(ii)
2.75
(iii)
7.75
(iv)
8.75
(v)
0.75
Question
15
15.
The base of
log
5
19
5
is
(i)
4
(ii)
19
5
(iii)
5
(iv)
2
(v)
8
Question
16
16.
If
(
x
2
+
y
2
)
=
62
x
y
, then
2
log
(
x
+
y
)
=
(i)
log
x
−
log
y
−
3
log
4
(ii)
log
x
+
log
y
−
3
log
4
(iii)
log
x
+
log
y
+
3
log
4
(iv)
log
x
−
log
y
+
3
log
4
Question
17
17.
log
10
27
28
=
(i)
4
log
3
−
2
log
2
−
log
7
(ii)
3
log
3
−
2
log
2
−
log
7
(iii)
2
log
3
−
2
log
2
−
log
7
(iv)
3
log
3
−
2
log
2
−
log
10
(v)
3
log
3
−
-1
log
2
−
log
7
Question
18
18.
log
75
2
+
log
75
9
=
(i)
log
75
12
(ii)
log
78
11
(iii)
log
75
11
(iv)
log
73
11
(v)
log
75
10
Question
19
19.
log
0.9459
+
log
0.6562
=
(i)
log
8.6208
(ii)
log
0.6208
(iii)
log
1.6208
(iv)
log
7.6208
(v)
log
2.6208
Question
20
20.
log
0.1961
−
log
0.7500
=
(i)
log
2.2614
(ii)
log
8.2614
(iii)
log
0.2614
(iv)
log
1.2614
(v)
log
7.2614
Question
21
21.
Express
log
3
√
p
2
q
4
in terms of
log
p
and
log
q
(i)
2
log
p
−
4
log
q
(ii)
2
3
log
p
+
4
3
log
q
(iii)
4
log
q
−
2
log
p
(iv)
1
2
log
p
log
q
(v)
2
log
p
+
4
log
q
Question
22
22.
The base of
log
5
7
62
is
(i)
5
7
(ii)
62
(iii)
3
7
(iv)
1
Question
23
23.
log
2
11
=
(i)
log
8
11
÷
log
2
8
(ii)
log
8
11
✕
log
2
8
(iii)
log
8
11
−
log
2
8
(iv)
log
2
8
÷
log
8
11
(v)
log
8
11
+
log
2
8
Question
24
24.
log
83.7500
+
log
53.6600
=
(i)
log
4495.0249
(ii)
log
4496.0249
(iii)
log
4494.0249
(iv)
log
4493.0249
(v)
log
4492.0249
Question
25
25.
If
(
x
4
+
y
4
)
=
z
4
, then which of the following is true?
(i)
log
(
z
2
−
y
2
)
log
(
z
2
+
y
2
)
=
5
(ii)
log
x
(
z
2
−
y
2
)
+
log
x
(
z
2
+
y
2
)
=
7
(iii)
log
x
(
z
2
−
y
2
)
+
log
x
(
z
2
+
y
2
)
=
4
(iv)
log
x
(
z
2
−
y
2
)
+
log
x
(
z
2
+
y
2
)
=
6
(v)
log
x
(
z
2
−
y
2
)
−
log
x
(
z
2
+
y
2
)
=
4
Assignment Key
1) (iv)
2) (iv)
3) (iii)
4) (iii)
5) (iii)
6) (i)
7) (iii)
8) (v)
9) (v)
10) (i)
11) (iv)
12) (i)
13) (v)
14) (v)
15) (iii)
16) (iii)
17) (ii)
18) (iii)
19) (ii)
20) (iii)
21) (ii)
22) (i)
23) (ii)
24) (iii)
25) (iii)