EduSahara™ Worksheet
Name : Chapter Based Worksheet
Chapter : Matrices
Grade : ICSE Grade X
License : Non Commercial Use
Question
1
1.
If A =
[
-6
2
4
3
]
, B =
[
1
4
7
-4
]
and C =
[
2
4
-9
-8
]
,
then A
+
8
B
+
10
C =
(i)
[
22
75
-30
-109
]
(ii)
[
22
74
-30
-112
]
(iii)
[
22
74
-31
-109
]
(iv)
[
22
74
-30
-109
]
(v)
[
22
74
-30
-106
]
Question
2
2.
Which of the following pairs of matrices are comparable?
(i)
[
9
4
-4
3
]
,
[
-9
-1
5
-6
3
-3
]
(ii)
[
9
4
-4
3
]
,
[
9
6
5
6
7
-6
]
(iii)
[
9
4
-4
3
]
,
[
-2
6
-5
-5
]
(iv)
[
9
6
5
6
7
-6
]
,
[
-9
-1
5
-6
3
-3
]
(v)
[
9
4
-4
3
]
,
[
5
-8
]
Question
3
3.
Which of the following are true?
a)
A null matrix is a square matrix
b)
A row matrix is a square matrix
c)
An identity matrix is a square matrix
d)
A column matrix is a square matrix
(i)
{b,c}
(ii)
{c}
(iii)
{a,c}
(iv)
{d,a,c}
Question
4
4.
Which of the following pairs of matrices can be multiplied?
(i)
[
4
1
3
]
,
[
5
7
1
7
0
5
]
(ii)
[
-1
4
-6
-5
]
,
[
1
1
]
(iii)
[
9
-2
-6
]
,
[
6
0
-3
-2
-7
-9
]
(iv)
[
5
7
1
7
0
5
]
,
[
9
-2
-6
]
(v)
[
-1
4
-6
-5
]
,
[
6
0
-3
-2
-7
-9
]
Question
5
5.
Find X if A =
[
8
9
-6
-8
]
, AX = B and B =
[
24
64
-28
-58
]
(i)
[
-6
2
8
8
]
(ii)
[
-6
-1
7
8
]
(iii)
[
-6
-1
8
8
]
(iv)
[
-6
0
8
8
]
(v)
[
-6
-4
8
8
]
Question
6
6.
If A =
[
a
11
a
12
a
21
a
22
]
and B =
[
b
11
b
12
b
21
b
22
]
,
then
(
A
✕
B
)
=
(i)
[
a
11
b
11
+
a
12
b
21
a
21
b
11
+
a
22
b
21
a
11
b
12
+
a
12
b
22
a
21
b
12
+
a
22
b
22
]
(ii)
[
a
11
b
11
+
a
21
b
12
a
11
b
21
+
a
21
b
22
a
12
b
11
+
a
22
b
12
a
12
b
21
+
a
22
b
22
]
(iii)
[
a
11
b
11
+
a
12
b
12
a
11
b
21
+
a
12
b
22
a
21
b
11
+
a
22
b
12
a
21
b
21
+
a
22
b
22
]
(iv)
[
b
11
a
11
+
b
12
a
21
b
11
a
12
+
b
12
a
22
b
21
a
11
+
b
22
a
21
b
21
a
12
+
b
22
a
22
]
(v)
[
a
11
b
11
+
a
12
b
21
a
11
b
12
+
a
12
b
22
a
21
b
11
+
a
22
b
21
a
21
b
12
+
a
22
b
22
]
Question
7
7.
If X + Y =
[
-11
6
11
-13
]
&
X - Y =
[
-5
6
7
-3
]
, find X and Y
(i)
[
-8
6
8
-8
]
,
[
-3
0
2
-5
]
(ii)
[
-3
0
2
-5
]
,
[
-8
6
9
-8
]
(iii)
[
-8
6
9
-8
]
,
[
-3
0
2
-5
]
(iv)
[
-8
6
9
-8
]
,
[
-1
0
2
-5
]
Question
8
8.
The order of matrix A =
[
-5
-4
-1
3
-1
0
]
is
(i)
2 ✕ 4
(ii)
3 ✕ 2
(iii)
3 ✕ 3
(iv)
2 ✕ 3
(v)
1 ✕ 3
Question
9
9.
Matrix A =
[
-1
0
2
0
-2
0
1
-2
0
]
is the additive inverse of
(i)
[
1
0
-2
3
2
0
-1
2
0
]
(ii)
[
2
0
-2
0
2
0
-1
2
0
]
(iii)
[
1
0
-2
0
1
0
-1
2
0
]
(iv)
[
1
0
-2
0
2
-3
-1
2
0
]
(v)
[
1
0
-2
0
2
0
-1
2
0
]
Question
10
10.
If
(
A
+
B
)
= 0, then
a)
A is the additive identity of B
b)
A is the additive inverse of B
c)
B is the additive inverse of A
d)
B is the additive identity of A
(i)
{a,b}
(ii)
{a,c,b}
(iii)
{d,c}
(iv)
{a,d,b}
(v)
{b,c}
Question
11
11.
If A =
[
-4
-1
5
-8
]
, the value of -A =
(i)
[
4
1
-5
8
]
(ii)
[
4
0
-5
8
]
(iii)
[
4
1
-3
8
]
(iv)
[
5
1
-5
8
]
(v)
[
4
-2
-5
8
]
Question
12
12.
Which of the following is a square matrix?
(i)
[
7
5
]
(ii)
[
6
8
2
2
9
5
]
(iii)
[
4
1
6
4
6
2
]
(iv)
[
2
2
3
7
]
(v)
[
8
1
3
5
5
2
7
3
2
5
8
5
]
Question
13
13.
The order of matrix A =
[
4
-3
2
5
]
is
(i)
3 ✕ 2
(ii)
2 ✕ 2
(iii)
2 ✕ 1
(iv)
1 ✕ 2
(v)
2 ✕ 3
Question
14
14.
Which of the following is a row matrix
(i)
[
7
2
8
6
7
]
(ii)
[
1
6
7
4
]
(iii)
[
6
7
6
]
(iv)
[
6
2
]
(v)
[
5
2
1
3
]
Question
15
15.
Which of the following matrices is comparable to the
given matrix
[
7
4
2
4
]
?
(i)
[
7
8
2
9
8
7
]
(ii)
[
6
4
7
7
]
(iii)
[
8
2
8
5
5
7
]
(iv)
[
1
4
6
8
9
8
7
7
1
3
6
6
]
(v)
[
4
9
]
Question
16
16.
If A =
[
6
9
1
2
]
and B =
[
6
8
9
7
]
, find
(
A
−
B
)
2
(i)
[
-8
-5
40
17
]
(ii)
[
-5
-5
40
17
]
(iii)
[
-8
-5
40
18
]
(iv)
[
-8
-5
40
16
]
(v)
[
-8
-7
40
17
]
Question
17
17.
If A =
[
1
]
and B =
[
-1
]
, then A
+
B =
(i)
[
0
]
(ii)
[
-2
]
(iii)
[
3
]
(iv)
[
1
]
(v)
[
-1
]
Question
18
18.
The order of matrix A =
[
1
-1
3
]
is
(i)
1 ✕ 3
(ii)
3 ✕ 1
(iii)
4 ✕ 1
(iv)
3 ✕ 2
(v)
2 ✕ 1
Question
19
19.
If A =
[
1
1
2
-2
-3
-2
0
2
3
]
and B =
[
-3
1
4
3
-3
1
-4
1
2
]
, then A
+
B =
(i)
[
-2
2
6
1
-6
-1
-4
3
5
]
(ii)
[
-2
2
6
3
-6
-1
-4
3
5
]
(iii)
[
-2
2
6
1
-7
-1
-4
3
5
]
(iv)
[
-2
2
6
-1
-6
-1
-4
3
5
]
(v)
[
-2
2
6
1
-6
-1
-4
3
6
]
Question
20
20.
If A =
[
a
11
a
12
a
21
a
22
]
and B =
[
b
11
b
12
b
21
b
22
]
,
then
(
A
−
B
)
=
(i)
[
a
11
−
b
11
a
21
−
b
21
a
12
−
b
12
a
22
−
b
22
]
(ii)
[
a
11
b
11
+
a
12
b
21
a
11
b
12
+
a
12
b
22
a
21
b
11
+
a
22
b
21
a
21
b
12
+
a
22
b
22
]
(iii)
[
a
11
−
b
11
a
12
−
b
12
a
21
−
b
21
a
22
−
b
22
]
(iv)
[
a
11
−
b
11
a
21
−
b
12
a
12
−
b
21
a
22
−
b
22
]
Question
21
21.
If A =
[
1
3
-1
4
]
, then find B satisfying A
✕ B = A
(i)
[
1
0
0
1
]
(ii)
[
1
0
0
3
]
(iii)
[
2
0
0
1
]
(iv)
[
1
0
-1
1
]
(v)
[
-2
0
0
1
]
Question
22
22.
Given A =
[
9
3
5
-4
]
find B such that AB = BA = A
(i)
[
1
0
-2
1
]
(ii)
[
1
0
0
1
]
(iii)
[
1
1
0
1
]
(iv)
[
1
0
0
4
]
(v)
[
0
0
0
1
]
Question
23
23.
If A =
[
2
4
3
0
]
and B =
[
5
-2
3
3
]
, then
10
A
−
4
B =
(i)
[
0
45
18
-12
]
(ii)
[
3
48
18
-12
]
(iii)
[
0
48
18
-12
]
(iv)
[
0
48
19
-12
]
(v)
[
0
48
18
-13
]
Question
24
24.
If A and B are given as below, neither
(
A
✕
B
)
nor
(
B
✕
A
)
is possible for which of the following pairs?
(i)
3 ✕ 1 , 1 ✕ 3
(ii)
2 ✕ 3 , 3 ✕ 1
(iii)
1 ✕ 2 , 2 ✕ 1
(iv)
1 ✕ 3 , 2 ✕ 3
(v)
1 ✕ 2 , 2 ✕ 3
Question
25
25.
If A and B are given as below, neither
(
A
✕
B
)
nor
(
B
✕
A
)
is possible for which of the following pairs?
(i)
1 ✕ 2 , 2 ✕ 3
(ii)
3 ✕ 1 , 3 ✕ 2
(iii)
3 ✕ 1 , 1 ✕ 3
(iv)
1 ✕ 2 , 2 ✕ 1
(v)
2 ✕ 3 , 3 ✕ 1
Assignment Key
1) (iv)
2) (iii)
3) (ii)
4) (iv)
5) (iii)
6) (v)
7) (iii)
8) (iv)
9) (v)
10) (v)
11) (i)
12) (iv)
13) (ii)
14) (ii)
15) (ii)
16) (i)
17) (i)
18) (ii)
19) (i)
20) (iii)
21) (i)
22) (ii)
23) (iii)
24) (iv)
25) (ii)