EduSahara™ Worksheet
Name : Chapter Based Worksheet
Chapter : Trigonometrical Identities
Grade : ICSE Grade X
License : Non Commercial Use
Question
1
1.
Given that
3
cot
θ
=
4
, find
sin
θ
(i)
3
4
(ii)
3
5
(iii)
5
4
(iv)
5
3
(v)
4
5
Question
2
2.
Given
cot
D
=
12
5
,
find
sin
D
(i)
12
13
(ii)
13
5
(iii)
13
12
(iv)
5
13
(v)
5
12
Question
3
3.
cot
2°
tan
88°
=
(i)
tan
2°
(ii)
-1
(iii)
tan
88°
(iv)
1
(v)
0
Question
4
4.
Given that
4
cot
θ
=
3
, find
cos
θ
(i)
4
3
(ii)
4
5
(iii)
5
4
(iv)
5
3
(v)
3
5
Question
5
5.
Given
cos
P
=
15
17
,
find
tan
P
(i)
17
8
(ii)
8
15
(iii)
15
8
(iv)
17
15
(v)
8
17
Question
6
6.
The value of
cos
241°
in terms of an angle between
0°
and
90°
is
(i)
−
sin
61°
(ii)
−
cos
61°
(iii)
sin
61°
(iv)
cos
61°
Question
7
7.
Given
tan
K
=
3
4
,
find
sec
K
(i)
4
5
(ii)
5
3
(iii)
5
4
(iv)
4
3
(v)
3
5
Question
8
8.
For angle values from 0° to 90°, which of the following are true?
a)
The tangent value of the angle increases
b)
The sum of the squares of the sine and cosine values remains a constant
c)
The cosine value of the angle increases
d)
The cotangent value of the angle increases
e)
The sine value of the angle increases
f)
The product of the sine and cosine values remains a constant
(i)
{f,c,e}
(ii)
{a,b,e}
(iii)
{d,a,b}
(iv)
{d,b}
(v)
{c,a}
Question
9
9.
In
△BCD
, right angled at
C
,
if
tan
B
=
2
3
,
find
cos
B
cos
D
−
sin
B
sin
D
(i)
2
13
√
13
(ii)
0
(iii)
1
2
√
13
(iv)
3
13
√
13
(v)
1
3
√
13
Question
10
10.
Express
cos
80°
in terms of
sin
80°
(i)
√
1
−
sin
2
80°
sin
80°
(ii)
1
√
1
−
sin
2
80°
(iii)
1
sin
80°
(iv)
√
1
−
sin
2
80°
(v)
sin
80°
√
1
−
sin
2
80°
Question
11
11.
sec
30°
cosec
3°
cosec
60°
sec
87°
=
(i)
1
(ii)
tan
30°
(iii)
-1
(iv)
0
(v)
tan
3°
Question
12
12.
In the given figure, △GHI is right angled at H. If HI = 9 cm and ∠I = 45°, find GH and GI
(i)
9
cm
&
9
√
2
cm
(ii)
8
cm
&
21
cm
(iii)
10
cm
&
18
cm
(iv)
10
cm
&
21
cm
(v)
10
cm
&
9
√
2
cm
Question
13
13.
In the given figure, △HIJ is a right angle triangle with ∠J = 90° and IJ = 17 cm. P is the mid-point of HJ. Find ∠PIJ using tables.
(i)
37
°
53
'
(ii)
38
°
53
'
(iii)
42
°
53
'
(iv)
40
°
53
'
(v)
43
°
53
'
Question
14
14.
From the given figure,
find
cosec
(
90
−
B
)
(i)
BD
CD
(ii)
BD
BC
(iii)
CD
BD
(iv)
CD
BC
(v)
BC
CD
Question
15
15.
Given
sec
A
=
5
3
,
find
cosec
A
(i)
3
4
(ii)
3
5
(iii)
4
5
(iv)
4
3
(v)
5
4
Question
16
16.
In the given figure,
sin
O
=
(i)
5
13
(ii)
5
11
(iii)
1
3
(iv)
7
13
(v)
3
13
Question
17
17.
Given A =
45°
, B =
30°
, find
tan
75°
(i)
(
2
−
√
3
)
(ii)
(
−
1
+
√
3
)
(iii)
(
4
+
√
3
)
(iv)
(
2
+
√
3
)
(v)
(
2
+
3
)
Question
18
18.
If
sec
6
x
=
cosec
(
(
x
+
27
)
)
, then
x
=
(i)
6
(ii)
10
(iii)
9
(iv)
12
(v)
8
Question
19
19.
Given
cot
J
=
3
4
,
find
sec
J
(i)
4
5
(ii)
3
5
(iii)
4
3
(iv)
5
4
(v)
5
3
Question
20
20.
a)
(
y
+
z
)
2
=
b
2
b)
2
y
z
=
b
2
sin
2
θ
c)
(
y
2
−
z
2
)
=
b
2
d)
(
y
2
+
z
2
)
=
b
2
e)
y
2
z
2
=
tan
2
θ
(i)
{c,d}
(ii)
{a,c,e}
(iii)
{a,b,d}
(iv)
{a,b}
(v)
{b,d,e}
Question
21
21.
Express
cosec
46°
in terms of
cot
46°
(i)
√
1
+
cot
2
46°
cot
46°
(ii)
1
cot
46°
(iii)
cot
46°
√
1
+
cot
2
46°
(iv)
√
1
+
cot
2
46°
(v)
1
√
1
+
cot
2
46°
Question
22
22.
Given that
5
cosec
θ
=
13
, find
tan
θ
(i)
12
5
(ii)
5
13
(iii)
12
13
(iv)
13
12
(v)
5
12
Question
23
23.
sin
18°
−
cos
72°
=
(i)
2
sin
18°
(ii)
0
(iii)
1
(iv)
-1
(v)
2
sin
72°
Question
24
24.
Find the length of the chord of the unit circle subtending an angle of 121° at the centre
(i)
1.7408
(ii)
1.7908
(iii)
1.6408
(iv)
1.8408
Question
25
25.
Find angle
θ
such that
tan
θ
=
0.3166
From Table of Natural Tangents
x°
0'
6'
12'
18'
24'
30'
36'
42'
48'
54'
1'
2'
3'
4'
5'
17
0.3057
0.3076
0.3096
0.3115
0.3134
0.3153
0.3172
0.3191
0.3211
0.3230
3
6
10
13
16
(i)
17
°
34
'
(ii)
17
°
44
'
(iii)
17
°
29
'
(iv)
17
°
24
'
(v)
17
°
39
'
Assignment Key
1) (ii)
2) (iv)
3) (iv)
4) (v)
5) (ii)
6) (ii)
7) (iii)
8) (ii)
9) (ii)
10) (iv)
11) (i)
12) (i)
13) (iv)
14) (ii)
15) (v)
16) (i)
17) (iv)
18) (iii)
19) (v)
20) (v)
21) (iv)
22) (v)
23) (ii)
24) (i)
25) (i)