EduSahara™ Worksheet
Name : Chapter Based Worksheet
Chapter : Trigonometrical Identities
Grade : ICSE Grade X
License : Non Commercial Use
Question 1
1.
    • Express
    •  
    • sin
      θ
    •  
    • in terms of
    •  
    • cos
      θ
  • (i)
     
     
    cos
    θ

     
     

    1
       
    cos
    2
     
    θ
  • (ii)
     
     
    1

     
     
    cos
    θ
  • (iii)
     
     
    1

     
     

    1
       
    cos
    2
     
    θ
  • (iv)
     
     

    1
       
    cos
    2
     
    θ
  • (v)
     
     

    1
       
    cos
    2
     
    θ

     
     
    cos
    θ
Question 2
2.
    • Express
    •  
    • cot
      θ
    •  
    • in terms of
    •  
    • cosec
      θ
  • (i)
     
     
    1

     
     

    cosec
    2
     
    θ
       
    1
  • (ii)
     
     
    cosec
    θ

     
     

    cosec
    2
     
    θ
       
    1
  • (iii)
     
     

    cosec
    2
     
    θ
       
    1
  • (iv)
     
     

    cosec
    2
     
    θ
       
    1

     
     
    cosec
    θ
  • (v)
     
     
    1

     
     
    cosec
    θ
Question 3
3.
    • cos
      42°

      sin
      48°
    • =
  • (i)
    tan
    48°
  • (ii)
    0
  • (iii)
    1
  • (iv)
    tan
    42°
  • (v)
    -1
Question 4
4.
    • Find the value of
    •  
    • tan
      (50.1)°
    • From Table of Natural Tangents
      0'
      6'
      12'
      18'
      24'
      30'
      36'
      42'
      48'
      54'
      1'
      2'
      3'
      4'
      5'
      50
      1.1918
      1.1960
      1.2002
      1.2045
      1.2088
      1.2131
      1.2174
      1.2218
      1.2261
      1.2305
      7
      14
      22
      29
      36
  • (i)
    1.1956
  • (ii)
    1.1963
  • (iii)
    1.196
  • (iv)
    1.1964
  • (v)
    1.1957
Question 5
5.
    • Given
    •  
    • cosec
      N
    • =
    • 5
    • ,
    • find
    •  
    • cot
      N
  • (i)
    1

    5
  • (ii)
    2



    6
  • (iii)
    2

    5



    6
  • (iv)
    1

    12



    6
  • (v)
    5

    12



    6
Question 6
6.
    • sin
      25°
      cos
      65°
        +  
      cos
      25°
      sin
      65°

      sin
      60°
      cos
      30°
        +  
      cos
      60°
      sin
      30°
    • =
  • (i)
    2
  • (ii)
    undefined
  • (iii)
    -1
  • (iv)
    0
  • (v)
    1
Question 7
7.
    • cot
      30°
    • =
  • (i)



    3
  • (ii)
    3
  • (iii)



    5
  • (iv)



    1

    3
  • (v)
    4


    3
Question 8
8.
    • In
    • △HIJ
    • , right angled at
    • I
    • ,
    • if
    • HI = 24 cm
    • and
    • IJ = 10 cm
    • ,
    • find
    • sin
      J
  • (i)
    10

    13
  • (ii)
    4

    5
  • (iii)
    14

    13
  • (iv)
    12

    11
  • (v)
    12

    13
Question 9
9.
Which of the following are true?
a)
    • cos
      (
      90
         
      θ
      )
    • =
    • cos
      θ
b)
    • cosec
      (
      90
         
      θ
      )
    • =
    • sec
      θ
c)
    • sec
      (
      90
         
      θ
      )
    • =
    • cosec
      θ
d)
    • tan
      (
      90
         
      θ
      )
    • =
    •    
      tan
      θ
e)
    • cot
      (
      90
         
      θ
      )
    • =
    • tan
      θ
f)
    • cos
      (
      90
         
      θ
      )
    • =
    • cot
      θ
  • (i)
    {d,c}
  • (ii)
    {a,b}
  • (iii)
    {d,b,c}
  • (iv)
    {f,a,e}
  • (v)
    {b,c,e}
Question 10
10.
    • Given
    •  
    • sin
      B
    • =
    • 4

      5
    • ,
    • find
    •  
    • tan
      B
  • (i)
    5

    3
  • (ii)
    3

    4
  • (iii)
    5

    4
  • (iv)
    4

    3
  • (v)
    3

    5
Question 11
11.
    • The value of
    • cosec
      136°
    • in terms of an angle between
    • and
    • 90°
    • is
  • (i)
       
    cosec
    46°
  • (ii)
       
    sec
    46°
  • (iii)
    sec
    46°
  • (iv)
    cosec
    46°
Question 12
12.
    • If
    •  
       
      cos
      4
      x
       = 
       
       
      sin
      (
      (
      x
      +
      30
      )
      )
    • , then
    • x
    • =
  • (i)
    13
  • (ii)
    12
  • (iii)
    10
  • (iv)
    11
  • (v)
    14
Question 13
13.
    • If
    •  
    • tan
      θ
    • =
    •  
    • 8

      9
    • , find
    •  
    •  
       
      (
      1
        +  
      cos
      θ
      )
      (
      1
         
      cos
      θ
      )

       
       
      (
      1
        +  
      sin
      θ
      )
      (
      1
         
      sin
      θ
      )
  • (i)
    64

    83
  • (ii)
    64

    81
  • (iii)
    64

    79
  • (iv)
    62

    81
  • (v)
    22

    27
Question 14
14.
    • Find angle
    •  
    • θ
    •  
    • such that
    •  
    • tan
      θ
    • =
    • 1.264
    • From Table of Natural Tangents
      0'
      6'
      12'
      18'
      24'
      30'
      36'
      42'
      48'
      54'
      1'
      2'
      3'
      4'
      5'
      51
      1.2349
      1.2393
      1.2437
      1.2484
      1.2527
      1.2572
      1.2617
      1.2662
      1.2708
      1.2753
      8
      15
      23
      30
      38
  • (i)
    51 °   39 '  
  • (ii)
    51 °   49 '  
  • (iii)
    51 °   29 '  
  • (iv)
    51 °   34 '  
  • (v)
    51 °   44 '  
Question 15
15.
    • The value of
    • sin
      172°
    • in terms of an angle between
    • and
    • 90°
    • is
  • (i)
    sin
    82°
  • (ii)
       
    sin
    82°
  • (iii)
       
    cos
    82°
  • (iv)
    cos
    82°
Question 16
16.
    • Find the value of
    •  
    • cos
      (51.7)°
    • From Table of Natural Cosines
      0'
      6'
      12'
      18'
      24'
      30'
      36'
      42'
      48'
      54'
      1'
      2'
      3'
      4'
      5'
      51
      0.6293
      0.6280
      0.6266
      0.6252
      0.6239
      0.6225
      0.6211
      0.6198
      0.6184
      0.9170
      2
      5
      7
      9
      12
  • (i)
    0.6194
  • (ii)
    0.6195
  • (iii)
    0.6201
  • (iv)
    0.6198
  • (v)
    0.6202
Question 17
17.
In the given figure, △JKL is a right angle triangle with ∠L = 90° and KL = 16 cm. R is the mid-point of JL. Find the length of the altitude from L to JK.
  • (i)
    16
    cm
  • (ii)
    8
    cm
  • (iii)
    4



    12
    cm
  • (iv)
    16



    3
    cm
  • (v)
    8



    2
    cm
Question 18
18.
In the given figure, △HIJ is right angled at I. If IJ = 10 cm and ∠J = 45°, find HI and HJ
  • (i)
      • 11
        cm
      • &
      • 20
        cm
  • (ii)
      • 10
        cm
      • &
      • 10



        2
        cm
  • (iii)
      • 11
        cm
      • &
      • 23
        cm
  • (iv)
      • 11
        cm
      • &
      • 10



        2
        cm
  • (v)
      • 9
        cm
      • &
      • 23
        cm
Question 19
19.
    • If
    •  
       
      sin
      5
      x
       = 
       
       
      cos
      (
      (
      x
      +
      48
      )
      )
    • , then
    • x
    • =
  • (i)
    8
  • (ii)
    7
  • (iii)
    6
  • (iv)
    4
  • (v)
    10
Question 20
20.
Which of the following are true?
a)
    • sec
      2
       
      θ
        +  
      tan
      2
       
      θ
       = 
      1
    • ,
    • 0 ≤ θ ≤ 90°
b)
    • cosec
      2
       
      θ
         
      cot
      2
       
      θ
       = 
      1
    • ,
    • 0 ≤ θ ≤ 90°
c)
    • sin
      2
       
      θ
        +  
      cos
      2
       
      θ
       = 
      1
    • ,
    • 0 ≤ θ ≤ 90°
d)
    • sin
      2
       
      θ
         
      cos
      2
       
      θ
       = 
      1
    • ,
    • 0 ≤ θ ≤ 90°
e)
    • cosec
      2
       
      θ
        +  
      cot
      2
       
      θ
       = 
      1
    • ,
    • 0 ≤ θ ≤ 90°
f)
    • sec
      2
       
      θ
         
      tan
      2
       
      θ
       = 
      1
    • ,
    • 0 ≤ θ ≤ 90°
  • (i)
    {b,c,f}
  • (ii)
    {e,a,f}
  • (iii)
    {d,b,c}
  • (iv)
    {d,c}
  • (v)
    {a,b}
Question 21
21.
    • cot
      35°
         
      tan
      55°
    • =
  • (i)
    -1
  • (ii)
    2
    sin
    55°
  • (iii)
    2
    sin
    35°
  • (iv)
    1
  • (v)
    0
Question 22
22.
    • Given that
    • 5
      cos
      θ
       = 
      3
    • , find
    •  
    •  
       
      sec
      θ
  • (i)
    3

    4
  • (ii)
    5

    4
  • (iii)
    5

    3
  • (iv)
    4

    3
  • (v)
    4

    5
Question 23
23.
    • Given that
    • 4
      sec
      θ
       = 
      5
    • , find
    •  
    •  
       
      cot
      θ
  • (i)
    4

    5
  • (ii)
    3

    5
  • (iii)
    4

    3
  • (iv)
    5

    3
  • (v)
    3

    4
Question 24
24.
Which of the following are true?
a)
    • cos
      (
      360
         
      θ
      )
    • =
    • cos
      θ
b)
    • sin
      (
      360
         
      θ
      )
    • =
    •    
      sin
      θ
c)
    • tan
      (
      360
         
      θ
      )
    • =
    •    
      cot
      θ
d)
    • cos
      (
      360
         
      θ
      )
    • =
    • sin
      θ
e)
    • tan
      (
      360
         
      θ
      )
    • =
    •    
      tan
      θ
f)
    • sin
      (
      360
         
      θ
      )
    • =
    •    
      cos
      θ
  • (i)
    {a,b,e}
  • (ii)
    {c,a}
  • (iii)
    {f,c,e}
  • (iv)
    {d,a,b}
  • (v)
    {d,b}
Question 25
25.
    • sec
      J
    • =
  • (i)
     
     
    1

     
     
    tan
    J
  • (ii)
     
     
    1

     
     
    sin
    J
  • (iii)
     
     
    1

     
     
    cot
    J
  • (iv)
     
     
    1

     
     
    cosec
    J
  • (v)
     
     
    1

     
     
    cos
    J
    Assignment Key

  •  1) (iv)
  •  2) (iii)
  •  3) (iii)
  •  4) (iii)
  •  5) (ii)
  •  6) (v)
  •  7) (i)
  •  8) (v)
  •  9) (v)
  •  10) (iv)
  •  11) (iii)
  •  12) (ii)
  •  13) (ii)
  •  14) (i)
  •  15) (iv)
  •  16) (iv)
  •  17) (v)
  •  18) (ii)
  •  19) (ii)
  •  20) (i)
  •  21) (v)
  •  22) (iii)
  •  23) (iii)
  •  24) (i)
  •  25) (v)